Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cancer ; 136(12): 2799-810, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25404202

RESUMO

Colorectal cancer (CRC) is the fourth leading cause of cancer related death worldwide due to high apoptotic resistance and metastatic potential. Because mutations as well as deregulation of CK1 isoforms contribute to tumor development and tumor progression, CK1 has become an interesting drug target. In this study we show that CK1 isoforms are differently expressed in colon tumor cell lines and that growth of these cell lines can be inhibited by CK1-specific inhibitors. Furthermore, expression of CK1δ and ɛ is changed in colorectal tumors compared to normal bowel epithelium, and high CK1ɛ expression levels significantly correlate with prolonged patients' survival. In addition to changes in CK1δ and ɛ expression, mutations within exon 3 of CK1δ were detected in colorectal tumors. These mutations influence ATP binding resulting in changes in kinetic parameters of CK1δ. Overexpression of these mutants in HT29 cells alters their ability to grow anchorage independently. Consistent with these results, these CK1δ mutants lead to differences in proliferation rate and tumor size in xenografts due to changes in gene expression, especially in genes involved in regulation of cell proliferation, cell cycle, and apoptosis. In summary, our results provide evidence that changes in the expression levels of CK1 isoforms in colorectal tumors correlate with patients' survival. Furthermore, CK1 mutants affect growth and proliferation of tumor cells and induce tumor growth in xenografts, leading to the assumption that CK1 isoforms provide interesting targets for the development of novel effective therapeutic concepts to treat colorectal cancer.


Assuntos
Caseína Quinase 1 épsilon/genética , Caseína Quinase Idelta/genética , Neoplasias Colorretais/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Idoso , Animais , Western Blotting , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Células HT29 , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Carga Tumoral/genética
2.
J Med Chem ; 57(19): 7933-46, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25191940

RESUMO

Deregulation of CK1 (casein kinase 1) activity can be involved in the development of several pathological disorders and diseases such as cancer. Therefore, research interest in identifying potent CK1-specific inhibitors is still increasing. A previously published potent and selective benzimidazole-derived CK1δ/ε-specific inhibitor compound with significant effects on several tumor cell lines was further modified to difluoro-dioxolo-benzoimidazole derivatives displaying remarkable inhibitory effects and increased intracellular availability. In the present study, we identified two heterocyclic molecules as new CK1-specific inhibitor compounds with favorable physicochemical properties and notable selectivity in a kinome-wide screen. Being compared to other CK1 isoforms, these compounds exhibited advanced isoform selectivity toward CK1δ. Moreover, newly designed compounds showed increased growth inhibitory activity in a panel of different tumor cell lines as determined by analyses of cell viability and cell cycle distribution. In summary, presented lead optimization resulted in new highly selective CK1δ-specific small molecule inhibitors with increased biological activity.


Assuntos
Antineoplásicos/síntese química , Benzamidas/síntese química , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase Idelta/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...