Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(29): 38698-38705, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33738732

RESUMO

The instant endeavor was undertaken for determination of lead (Pb) in water, soil, forage, and cow's blood domesticated in contaminated area of heavy automobiles' exhaust in Sahiwal town of District Sargodha, Pakistan. Water samples showed that the concentration of Pb ranged from 1.14 to 0.44 mg kg-1 at all sites. It was maximum at site 5 and minimum at site 2. Soil samples showed the concentration of Pb at all sites ranged from 1.58 to 0.279 mg kg-1. It was maximum in soil where Avena sativa was grown at site 5 and was found minimum in soil where Zea mays was grown at site 2. While among samples of forage, the concentration of Pb ranges from 0.048 to 2.002 mg kg-1. The highest Pb amount was found in Brassica campestris at site 1 and the minimum was recorded in Trifolium alexandrinum at site 2. Finally, the blood samples of cow depicted that concentration of Pb ranged from 4.468 to 0.217 mg kg-1. It was the maximum at site 1 and the minimum at site 3. It is recommended that such study should be conducted in other districts for public awareness.


Assuntos
Brassica , Metais Pesados , Poluentes do Solo , Animais , Bovinos , Cidades , Feminino , Chumbo , Metais Pesados/análise , Paquistão , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
2.
Plants (Basel) ; 9(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198339

RESUMO

Whitefly (Bemisia tabaci)-transmitted Geminiviruses cause serious diseases of crop plants in tropical and sub-tropical regions. Plants, animals, and their microbial symbionts have evolved complex ways to interact with each other that impact their life cycles. Blocking virus transmission by altering the biology of vector species, such as the whitefly, can be a potential approach to manage these devastating diseases. Virus transmission by insect vectors to plant hosts often involves bacterial endosymbionts. Molecular chaperonins of bacterial endosymbionts bind with virus particles and have a key role in the transmission of Geminiviruses. Hence, devising new approaches to obstruct virus transmission by manipulating bacterial endosymbionts before infection opens new avenues for viral disease control. The exploitation of bacterial endosymbiont within the insect vector would disrupt interactions among viruses, insects, and their bacterial endosymbionts. The study of this cooperating web could potentially decrease virus transmission and possibly represent an effective solution to control viral diseases in crop plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...