Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 275(Pt 1): 133384, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917927

RESUMO

This study introduces a novel approach for the separation of indacrinone (IC) enantiomers, crucial in treating edema, hypertension, and hyperuricemia. A cationic biopolymer from furan-2-ylmethylhydrazine-cellulose (FUH-CE), derived from cyanoethyl cellulose (CEC), serving as a substrate in molecular imprinting. A key innovation is the use of the Diels-Alder reaction for efficient cross-linking with bis(maleimido)ethane (BME). This chemical strategy resulted in molecularly imprinted microparticles with high selectivity for the S-IC enantiomer, which can be eluted by adjusting the solution's pH. Extensive characterization confirmed the chemical modifications and selective binding efficacy of these biopolymers. Utilizing separation columns, our method achieved an impressive chiral resolution of (±)-IC, with an enantiomeric excess (ee) of 95 % for R-IC during the loading phase and 97 % for S-IC during elution. Under optimized conditions, the biopolymer demonstrated a maximum binding capacity of 131 mg/g at pH 6. This advanced approach represents a significant advancement in chiral separation technology, offering a robust and efficient technique for the selective isolation of enantiomers. This method not only enhances potential targeted therapeutic applications but also provides a scalable solution for industrial chiral separations.

2.
Sci Rep ; 14(1): 11944, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789541

RESUMO

Copper can be susceptible to corrosion in acidic cleaning solutions for desalination system, especially if the solution is highly concentrated or if the cleaning process involves extended exposure to the acid. In the current work, Aloe ferox Mill (AFM extract) can be used as a natural origin corrosion inhibitor for copper in 1.0 M HCl solution. The corrosion mitigation qualities of AFM extract were assessed by means of electrochemical, gravimetric, and surface examinations. AFM extract is a mixed-type inhibitor, based on polarization research findings. The inhibitory effectiveness of AFM extract rises with concentration, reaching its maximum level (93.3%) at 250 mg L-1. The inclusion of AFM extract raises the activation energy for the corrosion reaction from 7.15 kJ mol-1 (blank solution) to 28.6 kJ mol-1 (at 250 mg L-1 AFM extract).

3.
Molecules ; 29(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474650

RESUMO

Our aims in this work are the preparation of an ionic liquid based on heterocyclic compounds with Ag nanoparticles and the investigation of its application as an antibacterial and anticandidal agent. These goals were achieved through the fabrication of an ionic liquid based on Ag nanoparticles with 5-Amino-3-(4-fluorophenyl)-N-hexadecyl-7-(4-methylphenyl)-2-H spiro[cyclohexane1,2'-[1,3]thiazolo [4,5-b]pyridine]-6-carbonitrile (P16). The nanostructure of the prepared ionic liquid was characterized using techniques such as FTIR, 1HNMR, 13CNMR, UV, SEM, and TEM. The biological activity of the prepared compound (P16) and its nanocomposites with Ag nanoparticles was tested using five clinical bacteria (Pseudomonas aeruginosa 249; Escherichia coli 141; Enterobacter cloacae 235; Staphylococcus epidermidis BC 161, and methicillin-resistant S. aureus 217), and three Candida species (Candida utilis ATCC 9255; C. tropicalis ATCC 1362, and C. albicans ATCC 20402). The FTIR, 1HNMR, and 13CNMR results confirmed the chemical structure of the synthesized P16 compound. The nanostructure of the prepared ionic liquid was determined based on data obtained from the UV, SEM, and TEM tests. The antibacterial and anticandidal results showed that the biological activity of the compound (P16) was enhanced after the formation of nanocomposite structures with Ag nanoparticles. Moreover, the biological activity of the compound itself (P16) and that of its nanocomposite structure with Ag nanoparticles was higher than that of ampicillin and amphotericin B, which were used as control drugs in this work.


Assuntos
Líquidos Iônicos , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanocompostos , Prata/química , Nanopartículas Metálicas/química , Líquidos Iônicos/química , Antibacterianos/química , Nanocompostos/química , Candida albicans , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...