Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667687

RESUMO

Presently, antimicrobial resistance is of great risk to remarkable improvements in health conditions and infection management. Resistance to various antibiotics has been considered a great obstacle in their usage, necessitating alternative strategies for enhancing the antibacterial effect. Combination therapy has been recognized as a considerable strategy that could improve the therapeutic influence of antibacterial agents. Therefore, the aim of this study was to combine the antibacterial action of compounds of natural origin like fusidic acid (FA) and cinnamon essential oil (CEO) for synergistic effects. A distinctive nanoemulsion (NE) was developed using cinnamon oil loaded with FA. Applying the Box-Behnken design (BBD) approach, one optimized formula was selected and integrated into a gel base to provide an FA-NE-hydrogel for optimal topical application. The FA-NE-hydrogel was examined physically, studied for in vitro release, and investigated for stability upon storage at different conditions, at room (25 °C) and refrigerator (4 °C) temperatures, for up to 3 months. Ultimately, the NE-hydrogel preparation was inspected for its antibacterial behavior using multidrug-resistant bacteria and checked by scanning electron microscopy. The FA-NE-hydrogel formulation demonstrated a pH (6.32), viscosity (12,680 cP), and spreadability (56.7 mm) that are acceptable for topical application. The in vitro release could be extended for 6 h, providing 52.0%. The formulation was stable under both test conditions for up to 3 months of storage. Finally, the FA-NE-hydrogel was found to inhibit the bacterial growth of not only Gram-positive but also Gram-negative bacteria. The inhibition was further elucidated by a scanning electron micrograph, indicating the efficiency of CEO in enhancing the antibacterial influence of FA when combined in an NE system.

2.
Saudi Pharm J ; 31(4): 547-553, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37063445

RESUMO

Background: Ruboxistaurin (RBX) used to treat retinopathy in diabetic patients which caused by microvascular damage and leakage which contributes to visual loss. There are no published studies on the use of liquid chromatography-tandem mass spectrometry for development and validation of a simple, sensitive, and accurate method for measuring RBX in rat plasma. Method: Chromatographic separation of RBX was achieved using ultra-performance liquid chromatography. Multiple-reaction monitoring quantification used RBX [M + H] + ion at m/z 469.18 and daughter ions at m/z 84, 58.12, and 98.10. Atorvastatin was used as internal standard (IS), has a single daughter ion, and was identified using m/z 559.6 â†’ 249.9. Validation of the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for RBX in rat plasma for linearity (greater than0.997) was carried out at 25-1000 ng/mL. Results: In rat plasma, the accuracy was within 3.4%, and the intra- and inter-day precision was within 11.8%. Stability, recovery, and matrix effect were all within acceptable limits. The drug retention time (0.85 ± 0.03 min) was remarkably short. Conclusion: The method developed in the current study is suitable to quantify RBX in plasma or bulk doses.

3.
Pharmaceutics ; 14(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890338

RESUMO

Ruboxistaurin (RBX) is an anti-vascular endothelial growth factor (anti-VEGF) agent that is used in the treatment of diabetic retinopathy and is mainly given intravitreally. To provide a safe and effective method for RBX administration, this study was designed to develop RBX nanoparticles using polyamidoamine (PAMAM) dendrimer generation 5 for the treatment of diabetic retinopathy. Drug loading efficiency, and in vitro release of proposed complexes of RBX: PAMAM dendrimers were determined and the complexation ratio that showed the highest possible loading efficiency was selected. The drug loading efficiency (%) of 1:1, 2.5:1, and 5:1 complexes was 89.2%, 96.4%, and 97.6%, respectively. Loading capacities of 1:1, 2.5:1, and 5:1 complexes were 1.6%, 4.0%, and 7.2% respectively. In comparison, the 5:1 complex showed the best results in the aforementioned measurements. The in vitro release studies showed that in 8 h, the RBX release from 1:1, 2.5:1, and 5:1 complexes was 37.5%, 35.9%, and 77.0%, respectively. In particular, 5:1 complex showed the highest drug release. In addition, particle size measurements showed that the diameter of empty PAMAM dendrimers was 214.9 ± 8.5 nm, whereas the diameters of loaded PAMAM dendrimers in 1:1, 2.5:1, 5:1 complexes were found to be 461.0 ± 6.4, 482.4 ± 12.5, and 420.0 ± 7.1 nm, respectively. Polydispersity index (PDI) showed that there were no significant changes in the PDI between the free and loaded PAMAM dendrimers. The zeta potential measurements showed that the free and loaded nanoparticles possessed neutral charges due to the presence of anionic and cationic terminal structures. Furthermore, the safety of this formulation was apparent on the viability of the MIO-M1 cell lines. This nanoformulation will improve the therapeutic outcomes of anti-VEGF therapy and the bioavailability of RBX to prevent vision loss in patients with diabetic retinopathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...