Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ Comput Sci ; 10: e2033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855240

RESUMO

This research conducts a comparative analysis of Faster R-CNN and YOLOv8 for real-time detection of fishing vessels and fish in maritime surveillance. The study underscores the significance of this investigation in advancing fisheries monitoring and object detection using deep learning. With a clear focus on comparing the performance of Faster R-CNN and YOLOv8, the research aims to elucidate their effectiveness in real-time detection, emphasizing the relevance of such capabilities in fisheries management. By conducting a thorough literature review, the study establishes the current state-of-the-art in object detection, particularly within the context of fisheries monitoring, while discussing existing methods, challenges, and limitations. The findings of this study not only shed light on the superiority of YOLOv8 in precise detection but also highlight its potential impact on maritime surveillance and the protection of marine resources.

2.
PeerJ Comput Sci ; 10: e1986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660156

RESUMO

The execution of delay-aware applications can be effectively handled by various computing paradigms, including the fog computing, edge computing, and cloudlets. Cloud computing offers services in a centralized way through a cloud server. On the contrary, the fog computing paradigm offers services in a dispersed manner providing services and computational facilities near the end devices. Due to the distributed provision of resources by the fog paradigm, this architecture is suitable for large-scale implementation of applications. Furthermore, fog computing offers a reduction in delay and network load as compared to cloud architecture. Resource distribution and load balancing are always important tasks in deploying efficient systems. In this research, we have proposed heuristic-based approach that achieves a reduction in network consumption and delays by efficiently utilizing fog resources according to the load generated by the clusters of edge nodes. The proposed algorithm considers the magnitude of data produced at the edge clusters while allocating the fog resources. The results of the evaluations performed on different scales confirm the efficacy of the proposed approach in achieving optimal performance.

3.
Sensors (Basel) ; 8(12): 7866-7881, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-27873963

RESUMO

This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding in-network processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...