Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35564102

RESUMO

This work investigates mixed convection in a lid-driven cavity. This cavity is filled with nanofluid and subjected to a magnetic field. The concentric ovoid cavity orientation (γ), 0−90°, and undulation number (N), 1−4, are considered. The Richardson number (Ri) varies between 1 and 100. The nanofluid volume fraction (φ) ranges between 0 and 0.08%. The effect of the parameters on flow, thermal transport, and entropy generation is illustrated by the stream function, isotherms, and isentropic contours. Heat transfer is augmented and the Nusselt number rises with higher Ri, γ, N, and φ. The simulations show that the heat transfer is responsible for entropy generation, while frictional and magnetic effects are marginal.

2.
Int J Hyperthermia ; 36(1): 613-624, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31195904

RESUMO

Objective: Importance of laser pulsing parameters and tissue's mechanical properties in the Er:YAG laser skin-tissue ablation is not adequately understood. The goal here was to develop a computational model that incorporates skin tissue's mechanical properties to investigate the influence of Er:YAG laser pulsing parameters on tissue ablation and coagulation. Methods: Tissue's mechanical properties were incorporated by modeling ablation as a tissue water vaporization occurring under elevated pressures that depend on tissue's stress-strain relationships. Tissue deformation was assumed unidirectional; therefore, a one-dimensional model was utilized. Analytical solution and experimental results were used to verify and validate the model. Then, influence of pulse duration (10 µs-2 ms) and fluence (0-30 J cm-2) on coagulation depth and ablation efficiency was explored. Results: Verification and validation results suggested that the model is acceptably accurate. Minimal effect of pulse duration on coagulation depth was predicted at sub-ablative conditions. At those conditions, coagulation depth increased asymptotically to ∼90 µm with increasing pulse fluence. At ablative conditions, coagulation depth decreased asymptotically to 22-28 µm with increasing pulse irradiance. Ablation efficiency plateaued at high pulse fluences and long pulse durations. Mechanical properties were important as about 50% increase in coagulation depth and 25% decrease in ablation efficiency were predicted when considering the high strain-rate loading effect in comparison with quasi-static loading. Conclusions: Proper tuning of Er:YAG laser pulsing parameters can substantially improve its therapeutic outcomes. The effect of these parameters varies and depends on whether the laser-tissue conditions are ablative or sub-ablative.


Assuntos
Neoplasias Cutâneas/cirurgia , Humanos , Terapia a Laser/métodos , Neoplasias Cutâneas/patologia
3.
Int J Hyperthermia ; 35(1): 568-577, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303431

RESUMO

OBJECTIVE: Laser with 532-nm wavelength (GreenLightTM) is clinically approved to treat benign prostatic hyperplasia (BPH). However, low rate of tissue ablation and excessive thermal coagulation are shortcomings of this therapy. The goal of this study was to use a mathematical model to identify clinically viable laser settings that have the potential to improve treatment time and outcomes. METHODS: A three-dimensional transient computational model was developed, validated against analytical and experimental results, and utilized to investigate the response of tissues subjected to continuous-wave and pulsed lasers emitting 532-nm light (GreenLightTM laser). The impact of laser power (10-125 W), pulse duration (100 ns and 100 µs) and pulse frequency (10 and 100 Hz) on tissue ablation and coagulation rates and sizes was explored. RESULTS: Good agreement between the computational model and analytical and experimental results was found. Continuous-wave laser results in 13% less coagulation zone thickness and 10% higher ablation rate than the low frequency pulsed laser. With increasing laser power; ablation rate is expected to increase linearly, while coagulation zone thickness is expected to increase asymptotically. Pulse frequency influence on tissue ablation and coagulation is relevant at high power, but pulse duration is found to have minimal effect at all powers. CONCLUSIONS: Laser thermal tissue ablation employing continuous wave mode lasers outperforms that employing pulsed mode lasers. Laser power settings should be carefully selected to maximize the rate of tissue ablation and minimize tissue coagulation.


Assuntos
Imageamento Tridimensional/métodos , Terapia a Laser/métodos , Próstata/diagnóstico por imagem , Humanos , Masculino , Próstata/patologia
4.
Springerplus ; 5: 529, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27186493

RESUMO

A numerical simulation of the steady two-dimensional laminar natural convection heat transfer for the gaseous low-pressure flows in the annulus region between two concentric horizontal cylinders is carried out. This type of flow occurs in "evacuated" solar collectors and in the receivers of the solar parabolic trough collectors. A finite volume code is used to solve the coupled set of governing equations. Boussinesq approximation is utilized to model the buoyancy effect. A correlation for the thermal conductivity ratio (k r = k eff/k) in terms of Knudsen number and the modified Rayleigh number is proposed for Prandtl number (Pr = 0.701). It is found that as Knudsen number increases then the thermal conductivity ratio decreases for a given Rayleigh number. Also, it is shown that the thermal conductivity ratio k r increases as Rayleigh number increases. It appears that there is no consistent trend for varying the dimensionless gap spacing between the inner and the outer cylinder ([Formula: see text]) on the thermal conductivity ratio (k r) for the considered spacing range.

5.
Comput Math Methods Med ; 2016: 8123930, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057205

RESUMO

Pulsatile flow simulations of non-Newtonian blood flow in an axisymmetric multistenosed artery, subjected to a static magnetic field, are performed using FLUENT. The influence of artery size and magnetic field intensity on transient wall shear stress, mean shear stress, and pressure drop is investigated. Three different types of blood, namely, healthy, diabetic, and anemic are considered. It is found that using Newtonian viscosity model of blood in contrast to Carreau model underestimates the pressure drop and wall shear stress by nearly 34% and 40%, respectively. In addition, it is found that using a magnetic field increases the pressure drop by 15%. Generally, doubling the artery diameter reduces the wall shear stress approximately by 1.6 times. Also increasing the stenosis level from moderate to severe results in reduction of the shear stress by 1.6 times. Furthermore, doubling the diameter of moderately stenosed artery results in nearly 3-fold decrease in pressure drop. It is also found that diabetic blood results in higher shear stress and greater pressure drop in comparison to healthy blood, whereas anemic blood has a decreasing effect on both wall shear stress and pressure drop in comparison to healthy blood.


Assuntos
Anemia/sangue , Anemia/fisiopatologia , Artérias/patologia , Diabetes Mellitus/sangue , Diabetes Mellitus/fisiopatologia , Hemodinâmica , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Constrição Patológica/fisiopatologia , Humanos , Campos Magnéticos , Modelos Cardiovasculares , Oscilometria , Pressão , Fluxo Pulsátil , Resistência ao Cisalhamento , Estresse Mecânico , Viscosidade
6.
J Biomech Eng ; 135(11): 114503, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24061603

RESUMO

Steady flow simulations of blood flow in an axisymmetric stenosed artery, subjected to a static magnetic field, are performed to investigate the influence of artery size, magnetic field strength, and non-Newtonian behavior on artery wall shear stress and pressure drop in the stenosed section. It is found that wall shear stress and pressure drop increase by decreasing artery size, assuming non-Newtonian fluid, and increasing magnetic field strength. In the computations, the shear thinning behavior of blood is accounted for by the Carreau-Yasuda model. Computational results are compared and found to be inline with available experimental data.


Assuntos
Artérias/fisiopatologia , Circulação Sanguínea , Simulação por Computador , Campos Magnéticos , Viscosidade Sanguínea , Constrição Patológica/fisiopatologia , Hidrodinâmica , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...