Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Chem Commun (Camb) ; 51(52): 10494-7, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26033194

RESUMO

We report the successful fabrication of a micro-pseudocapacitor based on ternary nickel cobalt sulfide for the first time, with performance substantially exceeding that of previously reported micro-pseudocapacitors based on binary sulfides. The CoNi2S4 micro-pseudocapacitor exhibits a maximum energy density of 18.7 mW h cm(-3) at a power density of 1163 mW cm(-3), and opens up an avenue for exploring a new family of ternary oxide/sulfide based micro-pseudocapacitors.

3.
ACS Appl Mater Interfaces ; 7(24): 13154-63, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26039512

RESUMO

We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.

4.
Sci Rep ; 5: 9617, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25892711

RESUMO

In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

5.
Nanoscale ; 6(15): 8956-61, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24965261

RESUMO

Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations.

6.
Sci Rep ; 4: 5243, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912617

RESUMO

Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200°C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent p-type oxide (SnO) as the active channel layer. A record mobility of 3.3 cm(2)V(-1)s(-1), large memory window (∼16 V), low read voltages (∼-1 V), and excellent retention characteristics up to 5000 sec have been achieved. The mobility achieved in our devices is over 10 times higher than previously reported polymer ferroelectric field-effect transistor memory with p-type channel. This demonstration opens the door for the development of non-volatile memory devices based on dual channel for emerging transparent and flexible electronic devices.

7.
Sci Rep ; 4: 4672, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24728223

RESUMO

We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n- and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350 °C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications.

8.
Small ; 10(14): 2849-58, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24634208

RESUMO

For the first time, it is demonstrated that nanoscale HfO2 surface passivation layers formed by atomic layer deposition (ALD) significantly improve the performance of Li ion batteries with SnO2 -based anodes. Specifically, the measured battery capacity at a current density of 150 mAg(-1) after 100 cycles is 548 and 853 mAhg(-1) for the uncoated and HfO2 -coated anodes, respectively. Material analysis reveals that the HfO2 layers are amorphous in nature and conformably coat the SnO2 -based anodes. In addition, the analysis reveals that ALD HfO2 not only protects the SnO2 -based anodes from irreversible reactions with the electrolyte and buffers its volume change, but also chemically interacts with the SnO2 anodes to increase battery capacity, despite the fact that HfO2 is itself electrochemically inactive. The amorphous nature of HfO2 is an important factor in explaining its behavior, as it still allows sufficient Li diffusion for an efficient anode lithiation/delithiation process to occur, leading to higher battery capacity.

9.
ACS Appl Mater Interfaces ; 6(6): 4196-206, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24580967

RESUMO

Mesoporous cobalt oxide (Co3O4) nanosheet electrode arrays are directly grown over flexible carbon paper substrates using an economical and scalable two-step process for supercapacitor applications. The interconnected nanosheet arrays form a three-dimensional network with exceptional supercapacitor performance in standard two electrode configuration. Dramatic improvement in the rate capacity of the Co3O4 nanosheets is achieved by electrodeposition of nanocrystalline, hydrous RuO2 nanoparticles dispersed on the Co3O4 nanosheets. An optimum RuO2 electrodeposition time is found to result in the best supercapacitor performance, where the controlled morphology of the electrode provides a balance between good conductivity and efficient electrolyte access to the RuO2 nanoparticles. An excellent specific capacitance of 905 F/g at 1 A/g is obtained, and a nearly constant rate performance of 78% is achieved at current density ranging from 1 to 40 A/g. The sample could retain more than 96% of its maximum capacitance even after 5000 continuous charge-discharge cycles at a constant high current density of 10 A/g. Thicker RuO2 coating, while maintaining good conductivity, results in agglomeration, decreasing electrolyte access to active material and hence the capacitive performance.

10.
ACS Appl Mater Interfaces ; 5(19): 9615-9, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24025476

RESUMO

P-type Cu2O/SnO bilayer thin film transistors (TFTs) with tunable performance were fabricated using room temperature sputtered copper and tin oxides. Using Cu2O film as capping layer on top of a SnO film to control its stoichiometry, we have optimized the performance of the resulting bilayer transistor. A transistor with 10 nm/15 nm Cu2O to SnO thickness ratio (25 nm total thickness) showed the best performance using a maximum process temperature of 170 °C. The bilayer transistor exhibited p-type behavior with field-effect mobility, on-to-off current ratio, and threshold voltage of 0.66 cm(2) V(-1) s(-1), 1.5×10(2), and -5.2 V, respectively. The advantages of the bilayer structure relative to single layer transistor are discussed.

11.
ACS Appl Mater Interfaces ; 5(15): 7268-73, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23844758

RESUMO

We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m(-1) K(-1), and the estimated figure of merit is 0.29 at 1000 K.

12.
Nanoscale ; 5(10): 4134-8, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23567992

RESUMO

We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50,000 cycles).

13.
ACS Appl Mater Interfaces ; 5(9): 3587-90, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23544956

RESUMO

It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a decrease in zinc tin oxide film thickness, and (ii) an increase in oxygen vacancy concentration. The devices prepared without soft annealing exhibited inferior transistor performances, in comparison to devices in which the active channel layer (zinc tin oxide) was subjected to soft annealing. The highest saturation field-effect mobility-5.6 cm(2) V(-1) s(-1) with a drain-to-source on-off current ratio (Ion/Ioff) of 2 × 10(8)-was achieved in the case of devices with 10-min soft-annealed zinc tin oxide thin films as the channel layer. The findings of this work identify soft annealing as a critical parameter for the processing of chemically derived thin-film transistors, and it correlates device performance to the changes in material structure induced by soft annealing.

14.
Nano Lett ; 12(5): 2559-67, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22494065

RESUMO

A scheme of current collector dependent self-organization of mesoporous cobalt oxide nanowires has been used to create unique supercapacitor electrodes, with each nanowire making direct contact with the current collector. The fabricated electrodes offer the desired properties of macroporosity to allow facile electrolyte flow, thereby reducing device resistance and nanoporosity with large surface area to allow faster reaction kinetics. Co(3)O(4) nanowires grown on carbon fiber paper collectors self-organize into a brush-like morphology with the nanowires completely surrounding the carbon microfiber cores. In comparison, Co(3)O(4) nanowires grown on planar graphitized carbon paper collectors self-organize into a flower-like morphology. In three electrode configuration, brush-like and flower-like morphologies exhibited specific capacitance values of 1525 and 1199 F/g, respectively, at a constant current density of 1 A/g. In two electrode configuration, the brush-like nanowire morphology resulted in a superior supercapacitor performance with high specific capacitances of 911 F/g at 0.25 A/g and 784 F/g at 40 A/g. In comparison, the flower-like morphology exhibited lower specific capacitance values of 620 F/g at 0.25 A/g and 423 F/g at 40 A/g. The Co(3)O(4) nanowires with brush-like morphology exhibited high values of specific power (71 kW/kg) and specific energy (81 Wh/kg). Maximum energy and power densities calculated for Co(3)O(4) nanowires with flower-like morphology were 55 Wh/kg and 37 kW/kg respectively. Both electrode designs exhibited excellent cycling stability by retaining ∼91-94% of their maximum capacitance after 5000 cycles of continuous charge-discharge.

15.
Adv Mater ; 24(16): 2165-70, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22438135

RESUMO

High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage, high mobility, and long retention times.


Assuntos
Eletricidade , Impressão/métodos , Transistores Eletrônicos , Fraude/prevenção & controle , Polímeros/química
16.
Nano Lett ; 11(12): 5165-72, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21923166

RESUMO

A simple and scalable method has been developed to fabricate nanostructured MnO2-carbon nanotube (CNT)-sponge hybrid electrodes. A novel supercapacitor, henceforth referred to as "sponge supercapacitor", has been fabricated using these hybrid electrodes with remarkable performance. A specific capacitance of 1,230 F/g (based on the mass of MnO2) can be reached. Capacitors based on CNT-sponge substrates (without MnO2) can be operated even under a high scan rate of 200 V/s, and they exhibit outstanding cycle performance with only 2% degradation after 100,000 cycles under a scan rate of 10 V/s. The MnO2-CNT-sponge supercapacitors show only 4% of degradation after 10,000 cycles at a charge-discharge specific current of 5 A/g. The specific power and energy of the MnO2-CNT-sponge supercapacitors are high with values of 63 kW/kg and 31 Wh/kg, respectively. The attractive performances exhibited by these sponge supercapacitors make them potentially promising candidates for future energy storage systems.

17.
J Nanosci Nanotechnol ; 11(6): 5532-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21770215

RESUMO

The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.


Assuntos
Eletrônica Médica , Transistores Eletrônicos , Semicondutores , Telemetria
18.
J Phys Condens Matter ; 22(35): 352204, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21403277

RESUMO

Thermoelectric performance peaks up for intermediate Mg(2)(Si(1-x)Sn(x)) alloys, but not for isomorphic and isoelectronic Mg(2)(Si(1-x)Ge(x)) alloys. A comparative study of the equation of state parameters is performed using density functional theory, Green's function technique, and the coherent potential approximation. Anomalous variation of the bulk modulus is found in Mg(2)(Si(1-x)Sn(x)) but not in the Mg(2)(Si(1-x)Ge(x)) analogs. Assuming a Debye model, linear variations of the unit cell volume and pressure derivative of the bulk modulus suggest that lattice effects are important for the thermoelectric response. From the electronic structure perspective, Mg(2)(Si(1-x)Sn(x)) is distinguished by a strong renormalization of the anion-anion hybridization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...