Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(17): 27493-27507, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615164

RESUMO

We report bidirectional 25/28 GHz millimeter wave (MMW)-over-fiber (MMWoF) and MMWoF-wireless (MMWoF-WL) transmission systems employing a single self-injection locked InAs/InP quantum-dash dual-mode laser (QD-DML) as a MMW source. Besides, we demonstrate the entire system exploiting the challenging mid-L-band wavelength window (1610 nm) to substantiate this source's potential, which exhibits tunability from C- to L-bands, in next-generation optical networks covering these wavelengths' window operations. While exhibiting 28 GHz mode spacing between the two optical carriers of QD-DML, a downstream (DS) transmission of 4.0 Gbaud (8 Gbits/s) quadrature-phase-shift-keying (QPSK) signal is conducted over this carrier. In addition, a simultaneous 2.0 Gbaud (8 Gbits/s) 16-level quadrature amplitude modulation (16-QAM) upstream (US) transmission on a 25 GHz MMW beat-tone is also achieved by exploiting one of the DS optical tones. A rigorous transmission characterization of variable DS and US QPSK/16-QAM data rates over MMWoF (10 km SMF) and MMWoF-WL (10 km SMF and up to 4 m wireless) are performed, showing a strong influence of phase noise on the DS link and hence the receiver sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...