Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 12(1): 2281179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126029

RESUMO

Functional effector T cells in the tumor microenvironment (TME) are critical for successful anti-tumor responses. T cell anti-tumor function is dependent on their ability to differentiate from a naïve state, infiltrate into the tumor site, and exert cytotoxic functions. The factors dictating whether a particular T cell can successfully undergo these processes during tumor challenge are not yet completely understood. Piezo1 is a mechanosensitive cation channel with high expression on both CD4+ and CD8+ T cells. Previous studies have demonstrated that Piezo1 optimizes T cell activation and restrains the CD4+ regulatory T cell (Treg) pool in vitro and under inflammatory conditions in vivo. However, little is known about the role Piezo1 plays on CD4+ and CD8+ T cells in cancer. We hypothesized that disruption of Piezo1 on T cells impairs anti-tumor immunity in vivo by hindering inflammatory T cell responses. We challenged mice with T cell Piezo1 deletion (P1KO) with tumor models dependent on T cells for immune rejection. P1KO mice had the more aggressive tumors, higher tumor growth rates and were unresponsive to immune-mediated therapeutic interventions. We observed a decreased CD4:CD8 ratio in both the secondary lymphoid organs and TME of P1KO mice that correlated inversely with tumor size. Poor CD4+ helper T cell responses underpinned the immunodeficient phenotype of P1KO mice. Wild type CD8+ T cells are sub-optimally activated in vivo with P1KO CD4+ T cells, taking on a CD25loPD-1hi phenotype. Together, our results suggest that Piezo1 optimizes T cell activation in the context of a tumor response.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral , Canais Iônicos/genética , Canais Iônicos/metabolismo
2.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553183

RESUMO

BACKGROUND: Despite its potential utility in delivering direct tumor killing and in situ whole-cell tumor vaccination, tumor cryoablation produces highly variable and unpredictable clinical response, limiting its clinical utility. The mechanism(s) driving cryoablation-induced local antitumor immunity and the associated abscopal effect is not well understood. METHODS: The aim of this study was to identify and explore a mechanism of action by which cryoablation enhances the therapeutic efficacy in metastatic tumor models. We used the subcutaneous mouse model of the rhabdomyosarcoma (RMS) cell lines RMS 76-9STINGwt or RMS 76-9STING-/-, along with other murine tumor models, in C57BL/6 or STING-/- (TMEM173-/- ) mice to evaluate local tumor changes, lung metastasis, abscopal effect on distant tumors, and immune cell dynamics in the tumor microenvironment (TME). RESULTS: The results show that cryoablation efficacy is dependent on both adaptive immunity and the STING signaling pathway. Contrary to current literature dictating an essential role of host-derived STING activation as a driver of antitumor immunity in vivo, we show that local tumor control, lung metastasis, and the abscopal effect on distant tumor are all critically dependent on a functioning tumor cell-intrinsic STING signaling pathway, which induces inflammatory chemokine and cytokine responses in the cryoablated TME. This reliance extends beyond cryoablation to include intratumoral STING agonist therapy. Additionally, surveys of gene expression databases and tissue microarrays of clinical tumor samples revealed a wide spectrum of expressions among STING-related signaling components. CONCLUSIONS: Tumor cell-intrinsic STING pathway is a critical component underlying the effectiveness of cryoablation and suggests that expression of STING-related signaling components may serve as a potential therapy response biomarker. Our data also highlight an urgent need to further characterize tumor cell-intrinsic STING pathways and the associated downstream inflammatory response evoked by cryoablation and other STING-dependent therapy approaches.


Assuntos
Criocirurgia , Neoplasias Pulmonares , Animais , Camundongos , Camundongos Endogâmicos C57BL , Imunidade Adaptativa , Citocinas , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...