Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 24(1): 198, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039464

RESUMO

Genes, expressed as sequences of nucleotides, are susceptible to mutations, some of which can lead to cancer. Machine learning and deep learning methods have emerged as vital tools in identifying mutations associated with cancer. Thyroid cancer ranks as the 5th most prevalent cancer in the USA, with thousands diagnosed annually. This paper presents an ensemble learning model leveraging deep learning techniques such as Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), and Bi-directional LSTM (Bi-LSTM) to detect thyroid cancer mutations early. The model is trained on a dataset sourced from asia.ensembl.org and IntOGen.org, consisting of 633 samples with 969 mutations across 41 genes, collected from individuals of various demographics. Feature extraction encompasses techniques including Hahn moments, central moments, raw moments, and various matrix-based methods. Evaluation employs three testing methods: self-consistency test (SCT), independent set test (IST), and 10-fold cross-validation test (10-FCVT). The proposed ensemble learning model demonstrates promising performance, achieving 96% accuracy in the independent set test (IST). Statistical measures such as training accuracy, testing accuracy, recall, sensitivity, specificity, Mathew's Correlation Coefficient (MCC), loss, training accuracy, F1 Score, and Cohen's kappa are utilized for comprehensive evaluation.


Assuntos
Aprendizado Profundo , Mutação , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/diagnóstico , Progressão da Doença
2.
BMC Med Inform Decis Mak ; 24(1): 112, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671513

RESUMO

BACKGROUND: Healthcare programs and insurance initiatives play a crucial role in ensuring that people have access to medical care. There are many benefits of healthcare insurance programs but fraud in healthcare continues to be a significant challenge in the insurance industry. Healthcare insurance fraud detection faces challenges from evolving and sophisticated fraud schemes that adapt to detection methods. Analyzing extensive healthcare data is hindered by complexity, data quality issues, and the need for real-time detection, while privacy concerns and false positives pose additional hurdles. The lack of standardization in coding and limited resources further complicate efforts to address fraudulent activities effectively. METHODOLGY: In this study, a fraud detection methodology is presented that utilizes association rule mining augmented with unsupervised learning techniques to detect healthcare insurance fraud. Dataset from the Centres for Medicare and Medicaid Services (CMS) 2008-2010 DE-SynPUF is used for analysis. The proposed methodology works in two stages. First, association rule mining is used to extract frequent rules from the transactions based on patient, service and service provider features. Second, the extracted rules are passed to unsupervised classifiers, such as IF, CBLOF, ECOD, and OCSVM, to identify fraudulent activity. RESULTS: Descriptive analysis shows patterns and trends in the data revealing interesting relationship among diagnosis codes, procedure codes and the physicians. The baseline anomaly detection algorithms generated results in 902.24 seconds. Another experiment retrieved frequent rules using association rule mining with apriori algorithm combined with unsupervised techniques in 868.18 seconds. The silhouette scoring method calculated the efficacy of four different anomaly detection techniques showing CBLOF with highest score of 0.114 followed by isolation forest with the score of 0.103. The ECOD and OCSVM techniques have lower scores of 0.063 and 0.060, respectively. CONCLUSION: The proposed methodology enhances healthcare insurance fraud detection by using association rule mining for pattern discovery and unsupervised classifiers for effective anomaly detection.


Assuntos
Mineração de Dados , Fraude , Seguro Saúde , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...