Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(44): 100018-100036, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37620704

RESUMO

The novel photocatalyst of Fe3O4@SiO2/PAEDTC@MIL-101(Fe) was prepared based on the sol-gel method, and its structure and morphology were determined by SEM mapping, TEM, XRD, FTIR, and N2 adsorption-desorption analyses. The photocatalytic activity of nanocomposite was evaluated in comparison with other particles as well as adsorption and photolysis processes. The effect of operating parameters showed that the complete degradation of penicillin G (PNG) can be provided at a photocatalyst dosage of 0.6 g/L, radiation intensity of 36 W, pH of 5, and time of 60 min. In the optimum condition, 84% TOC removal was attained and the BOD5/COD rate for the treated effluent was above 0.4, which was representative of the high biodegradability of the treated effluent compared to the raw sample. The findings of energy consumption showed that PNG can be easily and effectively treated by the photocatalytic process based on magnetic MIL-101(Fe) with electrical energy per order between 10 and 20.87 kWh/m3. Due to the excellent interaction between the MIL-101(Fe) and Fe3O4@SiO2/PAEDTC, the photocatalyst stability test showed a recyclability of the particles for 5 consecutive reaction cycles with a minimum reduction of 7%. Solution treated with photocatalyst under UV and visible light sources explained that the toxicity of the effluent after treatment is significantly reduced with the growth of Escherichia coli. Scavenging experiments showed that •OH radical and hole (h+) are the main agents in degrading PNG to CO2, H2O, and biodegradable and low-toxicity products. Finally, the findings of the diagnostic analysis and comparative experiments proved that with the interaction of Fe3O4@SiO2, NH2, and MIL-101(Fe), a lower band gap can be prepared for more absorption of photons and pollutant and also more and faster production of active radicals.


Assuntos
Estruturas Metalorgânicas , Dióxido de Silício , Dióxido de Silício/química , Luz , Fotólise , Catálise
2.
Pharmaceutics ; 15(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678852

RESUMO

Over the past decade, metallic drug-eluting implants have gained significance in orthopedic and dental applications for controlled drug release, specifically for preventing infection associated with implants. Recent studies showed that metallic implants loaded with drugs were substituted for conventional bare metal implants to achieve sustained and controlled drug release, resulting in a desired local therapeutic concentration. A number of secondary features can be provided by the incorporated active molecules, including the promotion of osteoconduction and angiogenesis, the inhibition of bacterial invasion, and the modulation of host body reaction. This paper reviews recent trends in the development of the metallic drug-eluting implants with various drug delivery systems in the past three years. There are various types of drug-eluting implants that have been developed to meet this purpose, depending on the drug or agents that have been loaded on them. These include anti-inflammatory drugs, antibiotics agents, growth factors, and anti-resorptive drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...