Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1426035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899156

RESUMO

[This corrects the article DOI: 10.3389/fpls.2024.1328966.].

2.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230017, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583481

RESUMO

Ecosystem response to climate change is complex. In order to forecast ecosystem dynamics, we need high-quality data on changes in past species abundance that can inform process-based models. Sedimentary ancient DNA (sedaDNA) has revolutionised our ability to document past ecosystems' dynamics. It provides time series of increased taxonomic resolution compared to microfossils (pollen, spores), and can often give species-level information, especially for past vascular plant and mammal abundances. Time series are much richer in information than contemporary spatial distribution information, which have been traditionally used to train models for predicting biodiversity and ecosystem responses to climate change. Here, we outline the potential contribution of sedaDNA to forecast ecosystem changes. We showcase how species-level time series may allow quantification of the effect of biotic interactions in ecosystem dynamics, and be used to estimate dispersal rates when a dense network of sites is available. By combining palaeo-time series, process-based models, and inverse modelling, we can recover the biotic and abiotic processes underlying ecosystem dynamics, which are traditionally very challenging to characterise. Dynamic models informed by sedaDNA can further be used to extrapolate beyond current dynamics and provide robust forecasts of ecosystem responses to future climate change. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
DNA Antigo , Ecossistema , Animais , Mudança Climática , Biodiversidade , Pólen , Mamíferos
3.
Front Plant Sci ; 15: 1328966, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550287

RESUMO

Extensive research has focused on exploring the range of genome sizes in eukaryotes, with a particular emphasis on land plants, where significant variability has been observed. Accurate estimation of genome size is essential for various research purposes, but existing sequence-based methods have limitations, particularly for low-coverage datasets. In this study, we introduce LocoGSE, a novel genome size estimator designed specifically for low-coverage datasets generated by genome skimming approaches. LocoGSE relies on mapping the reads on single copy consensus proteins without the need for a reference genome assembly. We calibrated LocoGSE using 430 low-coverage Angiosperm genome skimming datasets and compared its performance against other estimators. Our results demonstrate that LocoGSE accurately predicts monoploid genome size even at very low depth of coverage (<1X) and on highly heterozygous samples. Additionally, LocoGSE provides stable estimates across individuals with varying ploidy levels. LocoGSE fills a gap in sequence-based plant genome size estimation by offering a user-friendly and reliable tool that does not rely on high coverage or reference assemblies. We anticipate that LocoGSE will facilitate plant genome size analysis and contribute to evolutionary and ecological studies in the field. Furthermore, at the cost of an initial calibration, LocoGSE can be used in other lineages.

4.
Nature ; 612(7939): 283-291, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477129

RESUMO

Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11-19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.


Assuntos
DNA Ambiental , Ecossistema , Ecologia , Fósseis , Groenlândia
5.
Nat Commun ; 13(1): 6559, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333301

RESUMO

The European Alps are highly rich in species, but their future may be threatened by ongoing changes in human land use and climate. Here, we reconstructed vegetation, temperature, human impact and livestock over the past ~12,000 years from Lake Sulsseewli, based on sedimentary ancient plant and mammal DNA, pollen, spores, chironomids, and microcharcoal. We assembled a highly-complete local DNA reference library (PhyloAlps, 3923 plant taxa), and used this to obtain an exceptionally rich sedaDNA record of 366 plant taxa. Vegetation mainly responded to climate during the early Holocene, while human activity had an additional influence on vegetation from 6 ka onwards. Land-use shifted from episodic grazing during the Neolithic and Bronze Age to agropastoralism in the Middle Ages. Associated human deforestation allowed the coexistence of plant species typically found at different elevational belts, leading to levels of plant richness that characterise the current high diversity of this region. Our findings indicate a positive association between low intensity agropastoral activities and precipitation with the maintenance of the unique subalpine and alpine plant diversity of the European Alps.


Assuntos
Mudança Climática , DNA Antigo , Humanos , Plantas/genética , Lagos , Pólen
8.
Sci Adv ; 8(39): eabo7434, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170372

RESUMO

What drives ecosystem buildup, diversity, and stability? We assess species arrival and ecosystem changes across 16 millennia by combining regional-scale plant sedimentary ancient DNA from Fennoscandia with near-complete DNA and trait databases. We show that postglacial arrival time varies within and between plant growth forms. Further, arrival times were mainly predicted by adaptation to temperature, disturbance, and light. Major break points in ecological trait diversity were seen between 13.9 and 10.8 calibrated thousand years before the present (cal ka BP), as well as break point in functional diversity at 12.0 cal ka BP, shifting from a state of ecosystem buildup to a state where most habitat types and biotic ecosystem components were in place. Trait and functional diversity stabilized around 8 cal ka BP, after which both remained stable, although changes in climate took place and species inflow continued. Our ecosystem reconstruction indicates a millennial-scale time phase of formation to reach stable and resilient levels of diversity and functioning.

9.
Commun Biol ; 5(1): 570, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681049

RESUMO

Climate change is expected to cause major shifts in boreal forests which are in vast areas of Siberia dominated by two species of the deciduous needle tree larch (Larix). The species differ markedly in their ecosystem functions, thus shifts in their respective ranges are of global relevance. However, drivers of species distribution are not well understood, in part because paleoecological data at species level are lacking. This study tracks Larix species distribution in time and space using target enrichment on sedimentary ancient DNA extracts from eight lakes across Siberia. We discovered that Larix sibirica, presently dominating in western Siberia, likely migrated to its northern distribution area only in the Holocene at around 10,000 years before present (ka BP), and had a much wider eastern distribution around 33 ka BP. Samples dated to the Last Glacial Maximum (around 21 ka BP), consistently show genotypes of L. gmelinii. Our results suggest climate as a strong determinant of species distribution in Larix and provide temporal and spatial data for species projection in a changing climate.


Assuntos
Larix , DNA Antigo , Ecossistema , Larix/genética , Sibéria , Árvores
10.
Nat Commun ; 13(1): 2750, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585056

RESUMO

There is still limited consensus on the evolutionary history of species-rich temperate alpine floras due to a lack of comparable and high-quality phylogenetic data covering multiple plant lineages. Here we reconstructed when and how European alpine plant lineages diversified, i.e., the tempo and drivers of speciation events. We performed full-plastome phylogenomics and used multi-clade comparative models applied to six representative angiosperm lineages that have diversified in European mountains (212 sampled species, 251 ingroup species total). Diversification rates remained surprisingly steady for most clades, even during the Pleistocene, with speciation events being mostly driven by geographic divergence and bedrock shifts. Interestingly, we inferred asymmetrical historical migration rates from siliceous to calcareous bedrocks, and from higher to lower elevations, likely due to repeated shrinkage and expansion of high elevation habitats during the Pleistocene. This may have buffered climate-related extinctions, but prevented speciation along elevation gradients as often documented for tropical alpine floras.


Assuntos
Evolução Biológica , Magnoliopsida , Clima , Ecossistema , Especiação Genética , Filogenia
11.
PLoS One ; 17(4): e0266789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476794

RESUMO

The Neolithic and Bronze Age construction and habitation of the Stonehenge Landscape has been extensively explored in previous research. However, little is known about the scale of pre-Neolithic activity and the extent to which the later monumental complex occupied an 'empty' landscape. There has been a long-running debate as to whether the monumental archaeology of Stonehenge was created in an uninhabited forested landscape or whether it was constructed in an already partly open area of pre-existing significance to late Mesolithic hunter-gatherers. This is of significance to a global discussion about the relationship between incoming farmers and indigenous hunter-gatherer societies that is highly relevant to both Old and New World archaeology. Here we present the results of plant sedaDNA, palynological and geoarchaeological analysis at the Late hunter-gatherer site complex of Blick Mead at the junction of the drylands of Salisbury Plain and the floodplain of the River Avon, on the edge of the Stonehenge World Heritage Site. The findings are placed within a chronological framework built on OSL, radiocarbon and relative archaeological dating. We show that Blick Mead existed in a clearing in deciduous woodland, exploited by aurochsen, deer and hunter-gatherers for approximately 4000 years. Given its rich archaeology and longevity this strongly supports the arguments of continuity between the Late Mesolithic hunter-gatherers activity and Neolithic monument builders, and more specifically that this was a partially open environment important to both groups. This study also demonstrates that sediments from low-energy floodplains can provide suitable samples for successful environmental assaying using sedaDNA, provided they are supported by secure dating and complementary environmental proxies.


Assuntos
Cervos , Animais , Arqueologia , Ocupações , Pólen , Esporos
13.
Mol Ecol Resour ; 22(5): 2018-2037, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35015377

RESUMO

Low-coverage whole genome shotgun sequencing (or genome skimming) has emerged as a cost-effective method for acquiring genomic data in nonmodel organisms. This method provides sequence information on chloroplast genome (cpDNA), mitochondrial genome (mtDNA) and nuclear ribosomal regions (rDNA), which are over-represented within cells. However, numerous bioinformatic challenges remain to accurately and rapidly obtain such data in organisms with complex genomic structures and rearrangements, in particular for mtDNA in plants or for cpDNA in some plant families. Here we introduce the pipeline ORTHOSKIM, which performs in silico capture of targeted sequences from genomic and transcriptomic libraries without assembling whole organelle genomes. ORTHOSKIM proceeds in three steps: (i) global sequence assembly, (ii) mapping against reference sequences and (iii) target sequence extraction; importantly it also includes a range of quality control tests. Different modes are implemented to capture both coding and noncoding regions of cpDNA, mtDNA and rDNA sequences, along with predefined nuclear sequences (e.g., ultraconserved elements) or collections of single-copy orthologue genes. Moreover, aligned DNA matrices are produced for phylogenetic reconstructions, by performing multiple alignments of the captured sequences. While ORTHOSKIM is suitable for any eukaryote, a case study is presented here, using 114 genome-skimming libraries and four RNA sequencing libraries obtained for two plant families, Primulaceae and Ericaceae, the latter being a well-known problematic family for cpDNA assemblies. ORTHOSKIM recovered with high success rates cpDNA, mtDNA and rDNA sequences, well suited to accurately infer evolutionary relationships within these families. ORTHOSKIM is released under a GPL-3 licence and is available at: https://github.com/cpouchon/ORTHOSKIM.


Assuntos
Genoma de Cloroplastos , Transcriptoma , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA Ribossômico/genética , Genômica/métodos , Filogenia , Análise de Sequência de DNA/métodos
14.
PNAS Nexus ; 1(5): pgac209, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712342

RESUMO

Population size has increasingly been taken as the driver of past human environmental impact worldwide, and particularly in the Arctic. However, sedimentary ancient DNA (sedaDNA), pollen and archaeological data show that over the last 12,000 years, paleoeconomy and culture determined human impacts on the terrestrial ecology of Arctic Norway. The large Mortensnes site complex (Ceavccageadgi, 70°N) has yielded the most comprehensive multiproxy record in the Arctic to date. The site saw occupation from the Pioneer period (c. 10,000 cal. years BP) with more intensive use from c. 4,200 to 2,000 cal. years BP and after 1,600 cal. years BP. Here, we combine on-site environmental archaeology with a near-site lake record of plant and animal sedaDNA. The rich animal sedaDNA data (42 taxa) and on-site faunal analyses reveal switches in human dietary composition from early-Holocene fish + marine mammals, to mixed marine + reindeer, then finally to marine + reindeer + domesticates (sheep, cattle, pigs), with highest reindeer concentrations in the last millennium. Archaeological evidence suggests these changes are not directly driven by climate or variation in population densities at the site or in the region, but rather are the result of changing socio-economic activities and culture, probably reflecting settlers' origins. This large settlement only had discernable effects on its hinterland in the last 3,600 years (grazing) and more markedly in the last 1,000 years through reindeer keeping/herding and, possibly domestic stock. Near-site sedaDNA can be linked to and validate the faunal record from archaeological excavations, demonstrating that environmental impacts can be assessed at a landscape scale.

15.
Nature ; 600(7887): 86-92, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34671161

RESUMO

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Assuntos
Biota , DNA Antigo/análise , DNA Ambiental/análise , Metagenômica , Animais , Regiões Árticas , Mudança Climática/história , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Extinção Biológica , Sedimentos Geológicos , Pradaria , Groenlândia , Haplótipos/genética , Herbivoria/genética , História Antiga , Humanos , Lagos , Mamutes , Mitocôndrias/genética , Perissodáctilos , Pergelissolo , Filogenia , Plantas/genética , Dinâmica Populacional , Chuva , Sibéria , Análise Espaço-Temporal , Áreas Alagadas
16.
Sci Adv ; 7(31)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34330702

RESUMO

The effects of climate change on species richness are debated but can be informed by the past. Here, we generated a sedimentary ancient DNA dataset covering 10 lakes and applied novel methods for data harmonization. We assessed the impact of Holocene climate changes and nutrients on terrestrial plant richness in northern Fennoscandia. We find that richness increased steeply during the rapidly warming Early Holocene. In contrast to findings from most pollen studies, we show that richness continued to increase thereafter, although the climate was stable, with richness and the regional species pool only stabilizing during the past three millennia. Furthermore, overall increases in richness were greater in catchments with higher soil nutrient availability. We suggest that richness will increase with ongoing warming, especially at localities with high nutrient availability and assuming that human activity remains low in the region, although lags of millennia may be expected.


Assuntos
DNA Antigo , Plantas , Mudança Climática , Ecossistema , Humanos , Lagos , Plantas/genética , Pólen
17.
Mol Ecol Resour ; 21(7): 2249-2263, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33971086

RESUMO

Metagenomics can generate data on the diet of herbivores, without the need for primer selection and PCR enrichment steps as is necessary in metabarcoding. Metagenomic approaches to diet analysis have remained relatively unexplored, requiring validation of bioinformatic steps. Currently, no metagenomic herbivore diet studies have utilized both chloroplast and nuclear markers as reference sequences for plant identification, which would increase the number of reads that could be taxonomically informative. Here, we explore how in silico simulation of metagenomic data sets resembling sequences obtained from faecal samples can be used to validate taxonomic assignment. Using a known list of sequences to create simulated data sets, we derived reliable identification parameters for taxonomic assignments of sequences. We applied these parameters to characterize the diet of western capercaillies (Tetrao urogallus) located in Norway, and compared the results with metabarcoding trnL P6 loop data generated from the same samples. Both methods performed similarly in the number of plant taxa identified (metagenomics 42 taxa, metabarcoding 43 taxa), with no significant difference in species resolution (metagenomics 24%, metabarcoding 23%). We further observed that while metagenomics was strongly affected by the age of faecal samples, with fresh samples outperforming old samples, metabarcoding was not affected by sample age. On the other hand, metagenomics allowed us to simultaneously obtain the mitochondrial genome of the western capercaillies, thereby providing additional ecological information. Our study demonstrates the potential of utilizing metagenomics for diet reconstruction but also highlights key considerations as compared to metabarcoding for future utilization of this technique.


Assuntos
Herbivoria , Metagenômica , Código de Barras de DNA Taxonômico , Dieta , Metagenoma
18.
Commun Biol ; 4(1): 220, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594237

RESUMO

Palaeogenomics has greatly increased our knowledge of past evolutionary and ecological change, but has been restricted to the study of species that preserve either as or within fossils. Here we show the potential of shotgun metagenomics to reveal population genomic information for a taxon that does not preserve in the body fossil record, the algae Nannochloropsis. We shotgun sequenced two lake sediment samples dated to the Last Glacial Maximum and reconstructed full chloroplast and mitochondrial genomes to explore within-lake population genomic variation. This revealed two major haplogroups for each organellar genome, which could be assigned to known varieties of N. limnetica, although we show that at least three haplotypes were present using our minimum haplotype diversity estimation method. These approaches demonstrate the utility of lake sedimentary ancient DNA (sedaDNA) for population genomic analysis, thereby opening the door to environmental palaeogenomics, which will unlock the full potential of sedaDNA.


Assuntos
Cloroplastos/genética , DNA de Algas/genética , DNA Antigo/análise , Fósseis , Genoma Mitocondrial , Metagenômica , Microalgas/genética , Paleontologia , Polimorfismo de Nucleotídeo Único , Sedimentos Geológicos , Haplótipos , Filogenia
19.
Plants (Basel) ; 9(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244605

RESUMO

Genome skimming has the potential for generating large data sets for DNA barcoding and wider biodiversity genomic studies, particularly via the assembly and annotation of full chloroplast (cpDNA) and nuclear ribosomal DNA (nrDNA) sequences. We compare the success of genome skims of 2051 herbarium specimens from Norway/Polar regions with 4604 freshly collected, silica gel dried specimens mainly from the European Alps and the Carpathians. Overall, we were able to assemble the full chloroplast genome for 67% of the samples and the full nrDNA cluster for 86%. Average insert length, cover and full cpDNA and rDNA assembly were considerably higher for silica gel dried than herbarium-preserved material. However, complete plastid genomes were still assembled for 54% of herbarium samples compared to 70% of silica dried samples. Moreover, there was comparable recovery of coding genes from both tissue sources (121 for silica gel dried and 118 for herbarium material) and only minor differences in assembly success of standard barcodes between silica dried (89% ITS2, 96% matK and rbcL) and herbarium material (87% ITS2, 98% matK and rbcL). The success rate was > 90% for all three markers in 1034 of 1036 genera in 160 families, and only Boraginaceae worked poorly, with 7 genera failing. Our study shows that large-scale genome skims are feasible and work well across most of the land plant families and genera we tested, independently of material type. It is therefore an efficient method for increasing the availability of plant biodiversity genomic data to support a multitude of downstream applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA