Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0302687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848398

RESUMO

Xenogenesis has been recognized as a prospective method for producing channel catfish, Ictalurus punctatus ♀ × blue catfish, I. furcatus ♂ hybrids. The xenogenesis procedure can be achieved by transplanting undifferentiated stem cells derived from a donor fish into a sterile recipient. Xenogenesis for hybrid catfish embryo production has been accomplished using triploid channel catfish as a surrogate. However, having a surrogate species with a shorter maturation period, like white catfish (Ameiurus catus), would result in reduced feed costs, labor costs, and smaller body size requirements, making it a more suitable species for commercial applications where space is limited, and as a model species. Hence, the present study was conducted to assess the effectiveness of triploid white catfish as a surrogate species to transplant blue catfish stem cells (BSCs) and channel catfish stem cells (CSCs). Triploid white catfish fry were injected with either BSCs or CSCs labeled with PKH 26 fluorescence dye from 0 to 12 days post hatch (DPH). No significant differences in weight and length of fry were detected among BSCs and CSCs injection times (0 to 12 DPH) when fry were sampled at 45 and 90 DPH (P > 0.05). The highest survival was reported when fry were injected between 4.0 to 5.5 DPH (≥ 81.2%). At 45 and 90 DPH, cell and cluster area increased for recipients injected from 0 to 5.2 DPH, and the highest cluster area values were reported between 4.0 to 5.2 DPH. Thereafter, fluorescent cell and cluster area in the host declined with no further decrease after 10 DPH. At 45 DPH, the highest percentage of xenogens were detected when fry were injected with BSCs between 4.0 to 5.0 and CSCs between 3.0 to 5.0 DPH. At 90 DPH, the highest number of xenogens were detected from 4.0 to 6.0 DPH when injected with either BSCs or CSCs. The current study demonstrated the suitability of white catfish as a surrogate species when BSCs and CSCs were transplanted into triploid white catfish between 4.0 to 6.0 DPH (27.4 ± 0.4°C). Overall, these findings allow enhanced efficiency of commercializing xenogenic catfish carrying gametes of either blue catfish or channel catfish.


Assuntos
Aquicultura , Peixes-Gato , Triploidia , Animais , Aquicultura/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo , Transplante de Células-Tronco/métodos , Ictaluridae/genética , Feminino , Masculino
2.
Transgenic Res ; 32(4): 251-264, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468714

RESUMO

Channel catfish, Ictalurus punctatus, have limited ability to synthesize Ω-3 fatty acids. The ccßA-msElovl2 transgene containing masu salmon, Oncorhynchus masou, elongase gene driven by the common carp, Cyprinus carpio, ß-actin promoter was inserted into the channel catfish melanocortin-4 receptor (mc4r) gene site using the two-hit two-oligo with plasmid (2H2OP) method. The best performing sgRNA resulted in a knockout mutation rate of 92%, a knock-in rate of 54% and a simultaneous knockout/knock-in rate of 49%. Fish containing both the ccßA-msElovl2 transgene knock-in and mc4r knockout (Elovl2) were 41.8% larger than controls at 6 months post-hatch (p = 0.005). Mean eicosapentaenoic acid (EPA, C20:5n-3) levels in Elov2 mutants and mc4r knockout mutants (MC4R) were 121.6% and 94.1% higher than in controls, respectively (p = 0.045; p = 0.025). Observed mean docosahexaenoic acid (DHA, C22:6n-3) and total EPA + DHA content was 32.8% and 45.1% higher, respectively, in Elovl2 transgenic channel catfish than controls (p = 0.368; p = 0.025). To our knowledge this is the first example of genome engineering to simultaneously target transgenesis and knock-out a gene in a commercially important aquaculture species for multiple improved performance traits. With a high transgene integration rate, improved growth, and higher omega-3 fatty acid content, the use of Elovl2 transgenic channel catfish appears beneficial for application on commercial farms.


Assuntos
Carpas , Ictaluridae , Oncorhynchus , Animais , Ictaluridae/genética , Elongases de Ácidos Graxos/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Animais Geneticamente Modificados/genética , Oncorhynchus/genética
3.
ACS Synth Biol ; 11(12): 4210-4219, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36332126

RESUMO

CRISPR/Cas9-mediated knock-in (KI) has a wide application in gene therapy, gene function study, and transgenic breeding programs. Unlike gene therapy, which requires accurate KI to correct gene mutation, transgenic breeding programs can accept robust KI as long as integration does not interrupt normal gene functions and result in any negative pleiotropic effects. High KI efficiency is required to reduce the breeding cost and shorten the breeding period, especially in transferring multiple foreign genes to a single individual. To elevate the KI efficacy and achieve multiple gene KIs simultaneously, we introduced a new strategy that enables transgene integration into numerous sites of the genome by targeting long repeated sequences (LRSs). Using this simple strategy, for the first time we successfully generated transgenic fish carrying the masu salmon (Oncorhynchus masou) elovl2 gene and rabbitfish (Siganus canaliculatus) Δ4 fad and Δ6 fad genes, and achieved robust target KI of elovl2 and Δ6 fad genes at multiple sites of LRS1 and LRS3, respectively, in the initial generation. This demonstrated that donor plasmid homology arms, which were nearly identical but not completely the same as the genome sequence, still led to on-target KI. Although the target KI efficiencies at LRS1, LRS2, and LRS3 sites were still relatively low in the current study, it is very promising that 100% KI efficiency in the future could be realized and perfected by selection of better LRSs and optimization of sgRNAs.


Assuntos
Ácidos Graxos Dessaturases , Flavina-Adenina Dinucleotídeo , Animais , Elongases de Ácidos Graxos/genética , Transgenes/genética , Animais Geneticamente Modificados/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Sistemas CRISPR-Cas/genética
4.
Mar Biotechnol (NY) ; 24(5): 843-855, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35943638

RESUMO

Effects of CRISPR/Cas9 knockout of the melanocortin-4 receptor (mc4r) gene in channel catfish, Ictalurus punctatus, were investigated. Three sgRNAs targeting the channel catfish mc4r gene in conjunction with Cas9 protein were microinjected in embryos and mutation rate, inheritance, and growth were studied. Efficient mutagenesis was achieved as demonstrated by PCR, Surveyor® assay, and DNA sequencing. An overall mutation rate of 33% and 33% homozygosity/bi-allelism was achieved in 2017. Approximately 71% of progeny inherited the mutation. Growth was generally higher in MC4R mutants than controls (CNTRL) at all life stages and in both pond and tank environments. There was a positive relationship between zygosity and growth, with F1 homozygous/bi-allelic mutants reaching market size 30% faster than F1 heterozygotes in earthen ponds (p = 0.022). At the stocker stage (~ 50 g), MC4R × MC4R mutants generated in 2019 were 40% larger than the mean of combined CNTRL × CNTRL families (p = 0.005) and 54% larger than F1 MC4R × CNTRL mutants (p = 0.001) indicating mutation may be recessive. With a high mutation rate and inheritance of the mutation as well as improved growth, the use of gene-edited MC4R channel catfish appears to be beneficial for application on commercial farms.


Assuntos
Ictaluridae , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Humanos , Ictaluridae/genética , Ictaluridae/metabolismo , Mutação , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
5.
Mar Biotechnol (NY) ; 24(3): 513-523, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35416602

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish (Ictalurus punctatus) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an elovl2 transgene isolated from masu salmon (Oncorhynchus masou) driven by a carp ß-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P1 transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish (P < 0.05). Additionally, total n-3 PUFAs and omega-6 polyunsaturated fatty acids (n-6 PUFAs) increased to 1.41-fold and 1.50-fold, respectively, suggesting the ß-actin-elovl2 transgene improved biosynthesis of PUFAs in channel catfish as a whole. The n-9 fatty acid level decreased in the transgenic fish compared to the control. Morphometric analysis showed that there were significant differences between injected fish with sgRNAs (including positive and negative fish) and sham-injected controls (P < 0.001). Potential off-target effects are likely the major factor responsible for morphological deformities. Optimization of sgRNA design to maximize activity and reduce off-target effects of CRISPR/Cas9 should be examined in future transgenic research, but this research shows a promising first step in the improvement of n-3 PUFAs in channel catfish.


Assuntos
Ácidos Graxos Ômega-3 , Ictaluridae , Oncorhynchus , Actinas/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Técnicas de Transferência de Genes , Ictaluridae/genética , Ictaluridae/metabolismo , Oncorhynchus/genética , Salmão/genética
6.
Mar Biotechnol (NY) ; 23(1): 90-105, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33113010

RESUMO

The bighead catfish (Clarias macrocephalus) and channel catfish (Ictalurus punctatus) are freshwater species in the Siluriformes order. C. macrocephalus has both gills and modified gill structures serving as an air-breathing organ (ABO), while I. punctatus does not possess such an organ, and cannot breathe in air, providing an excellent model for studying the molecular basis of ABO development in teleost fish. To investigate the critical time window for the development of air-breathing function, seven development stages were selected based on hypoxia challenge results, and RNA-seq was performed upon C. macrocephalus to compare with the non-air-breathing I. punctatus. Five-hundred million reads were generated and 25,239 expressed genes were annotated in C. macrocephalus. Among those, 8675 genes were differentially expressed across developmental stages. Comparative genomic analysis identified 1458 C. macrocephalus specific genes, which were absent in I. punctatus. Gene network and protein-protein interaction analyses identified 26 key hub genes involved in the air-breathing function. Three top candidate genes, mb, ngb, hbae, are mainly associated with oxygen carrying, oxygen binding, and heme binding activities. Our study provides a rich data set for exploring the genomic basis of air-breathing function in C. macrocephalus and offers insights into the adaption to hypoxic environments.


Assuntos
Adaptação Fisiológica/genética , Peixes-Gato/genética , Respiração/genética , Animais , Peixes-Gato/crescimento & desenvolvimento , Peixes-Gato/metabolismo , Perfilação da Expressão Gênica , Genômica , Brânquias/fisiologia , Hipóxia , Oxigênio/metabolismo , Análise de Sequência de RNA
7.
Sci Rep ; 10(1): 22271, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335280

RESUMO

CRISPR/Cas9-based gene knockout in animal cells, particularly in teleosts, has proven to be very efficient with regards to mutation rates, but the precise insertion of exogenous DNA or gene knock-in via the homology-directed repair (HDR) pathway has seldom been achieved outside of the model organisms. Here, we succeeded in integrating with high efficiency an exogenous alligator cathelicidin gene into a targeted non-coding region of channel catfish (Ictalurus punctatus) chromosome 1 using two different donor templates (synthesized linear dsDNA and cloned plasmid DNA constructs). We also tested two different promoters for driving the gene, zebrafish ubiquitin promoter and common carp ß-actin promoter, harboring a 250-bp homologous region flanking both sides of the genomic target locus. Integration rates were found higher in dead fry than in live fingerlings, indicating either off-target effects or pleiotropic effects. Furthermore, low levels of mosaicism were detected in the tissues of P1 individuals harboring the transgene, and high transgene expression was observed in the blood of some P1 fish. This can be an indication of the localization of cathelicidin in neutrophils and macrophage granules as also observed in most antimicrobial peptides. This study marks the first use of CRISPR/Cas9 HDR for gene integration in channel catfish and may contribute to the generation of a more efficient system for precise gene integration in catfish and other aquaculture species, and the development of gene-edited, disease-resistant fish.


Assuntos
Jacarés e Crocodilos/genética , Peptídeos Catiônicos Antimicrobianos/genética , Sistemas CRISPR-Cas/genética , Peixes-Gato/genética , Animais , Peixes-Gato/crescimento & desenvolvimento , Edição de Genes , Técnicas de Introdução de Genes , Marcação de Genes/métodos , Genoma/genética , RNA Guia de Cinetoplastídeos/genética , Reparo de DNA por Recombinação/genética , Catelicidinas
8.
Front Genet ; 11: 608325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552125

RESUMO

Tra catfish (Pangasianodon hypophthalmus), also known as striped catfish, is a facultative air-breather that uses its swim bladder as an air-breathing organ (ABO). A related species in the same order (Siluriformes), channel catfish (Ictalurus punctatus), does not possess an ABO and thus cannot breathe in the air. Tra and channel catfish serve as great comparative models for investigating possible genetic underpinnings of aquatic to land transitions, as well as for understanding genes that are crucial for the development of the swim bladder and the function of air-breathing in tra catfish. In this study, hypoxia challenge and microtomy experiments collectively revealed critical time points for the development of the air-breathing function and swim bladder in tra catfish. Seven developmental stages in tra catfish were selected for RNA-seq analysis based on their transition to a stage that could live at 0 ppm oxygen. More than 587 million sequencing clean reads were generated, and a total of 21,448 unique genes were detected. A comparative genomic analysis between channel catfish and tra catfish revealed 76 genes that were present in tra catfish, but absent from channel catfish. In order to further narrow down the list of these candidate genes, gene expression analysis was performed for these tra catfish-specific genes. Fourteen genes were inferred to be important for air-breathing. Of these, HRG, GRP, and CX3CL1 were identified to be the most likely genes related to air-breathing ability in tra catfish. This study provides a foundational data resource for functional genomic studies in air-breathing function in tra catfish and sheds light on the adaptation of aquatic organisms to the terrestrial environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...