Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 128(31): 9984-5, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16881606

RESUMO

In this communication, we demonstrate a new approach to sensitization of Ru-polypyridine complexes by using semiconductor nanocrystal quantum dots (NQDs). When mixed in solution, the complexes functionalized by carboxylic groups adsorb onto the surface of the NQDs. Excitation of NQDs by 400 nm light leads to fast, 5 ps hole transfer from the photoexcited NQDs to the surface-adsorbed complexes. This result indicates that Ru complexes can be sensitized by CdSe NQDs, which opens interesting opportunities for designing new types of photocatalytic materials for solar energy conversion applications. These materials will take advantage of broad size-controlled absorption spectra and large extinction coefficients of NQDs as well as the unique property of NQDs to respond to absorption of a single photon by producing multiple electron-hole pairs.

2.
Inorg Chem ; 44(20): 6802-27, 2005 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-16180838

RESUMO

The goal of artificial photosynthesis is to use the energy of the sun to make high-energy chemicals for energy production. One approach, described here, is to use light absorption and excited-state electron transfer to create oxidative and reductive equivalents for driving relevant fuel-forming half-reactions such as the oxidation of water to O2 and its reduction to H2. In this "integrated modular assembly" approach, separate components for light absorption, energy transfer, and long-range electron transfer by use of free-energy gradients are integrated with oxidative and reductive catalysts into single molecular assemblies or on separate electrodes in photelectrochemical cells. Derivatized porphyrins and metalloporphyrins and metal polypyridyl complexes have been most commonly used in these assemblies, with the latter the focus of the current account. The underlying physical principles--light absorption, energy transfer, radiative and nonradiative excited-state decay, electron transfer, proton-coupled electron transfer, and catalysis--are outlined with an eye toward their roles in molecular assemblies for energy conversion. Synthetic approaches based on sequential covalent bond formation, derivatization of preformed polymers, and stepwise polypeptide synthesis have been used to prepare molecular assemblies. A higher level hierarchial "assembly of assemblies" strategy is required for a working device, and progress has been made for metal polypyridyl complex assemblies based on sol-gels, electropolymerized thin films, and chemical adsorption to thin films of metal oxide nanoparticles.

3.
J Am Chem Soc ; 124(50): 15094-8, 2002 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-12475355

RESUMO

We report temperature-dependent excited-state lifetime measurements on [Ru(bpy)(2)dppz](2+) in both protic and aprotic solvents. These experiments yield a unifying picture of the excited-state photophysics that accounts for observations in both types of solvent. Our measurements support the notion of bpy-like and phz-like states associated with the dppz ligand and show that the ligand orbital associated with the bright state is similar in size to the corresponding orbital in the (3)MLCT state of [Ru(bpy)(3)](2+). In contrast to the current thinking, the experiments presented here indicate that the light-switch effect is not driven by a state reversal. Rather, they suggest that the dark state is always lowest in energy, even in aprotic solvents, and that the light-switch behavior is the result of a competition between energetic factors that favor the dark state and entropic factors that favor the bright (bpy) state.


Assuntos
Compostos Organometálicos/química , Fenazinas/química , Rutênio/química , Sondas de DNA/química , Cinética , Medições Luminescentes , Fotoquímica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...