Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antib Ther ; 7(1): 53-66, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38371953

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the Middle East respiratory syndrome coronavirus (MERS-CoV) are highly pathogenic human coronaviruses (CoVs). Anti-CoVs mAbs and vaccines may be effective, but the emergence of neutralization escape variants is inevitable. Angiotensin-converting enzyme 2 and dipeptidyl peptidase 4 enzyme are the getaway receptors for SARS-CoV-2 and MERS-CoV, respectively. Thus, we reformatted these receptors as Fc-fusion decoy receptors. Then, we tested them in parallel with anti-SARS-CoV (ab1-IgG) and anti-MERS-CoV (M336-IgG) mAbs against several variants using pseudovirus neutralization assay. The generated Fc-based decoy receptors exhibited a strong inhibitory effect against all pseudotyped CoVs. Results showed that although mAbs can be effective antiviral drugs, they might rapidly lose their efficacy against highly mutated viruses. We suggest that receptor traps can be engineered as Fc-fusion proteins for highly mutating viruses with known entry receptors, for a faster and effective therapeutic response even against virus harboring antibodies escape mutations.

2.
Front Mol Biosci ; 10: 1190669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255540

RESUMO

The use of oncolytic viruses (OVs) in combination with cytokines, such as IL-12, is a promising approach for cancer treatment that addresses the limitations of current standard treatments and traditional cancer immunotherapies. IL-12, a proinflammatory cytokine, triggers intracellular signaling pathways that lead to increased apoptosis of tumor cells and enhanced antitumor activity of immune cells via IFN-γ induction, making this cytokine a promising candidate for cancer therapy. Targeted expression of IL-12 within tumors has been shown to play a crucial role in tumor eradication. The recent development of oncolytic viruses enables targeted delivery and expression of IL-12 at the tumor site, thereby addressing the systemic toxicities associated with traditional cancer therapy. In this study, we constructed an oncolytic virus, VSVΔ51M, based on the commercially available VSV wild-type backbone and further modified it to express human IL-12. Our preclinical data confirmed the safety and limited toxicity of the modified virus, VSV-Δ51M-hIL-12, supporting its potential use for clinical development.

3.
Glob Chall ; 6(7): 2200008, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35860397

RESUMO

Rapid lateral flow immune-assays are point-of-care diagnostic tools that are easy to use, cheap, and do not need centralized infrastructure. Therefore, these devices are appealing for rapid detection of the humoral immune responses to infections, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The novel technique introduced here uses a complex of anti-SARS-CoV-2 N-protein antibodies conjugated to gold nanoparticles that are bound to five SARS-CoV-2 N protein conjugated to gold nanoparticles to amplify the signals obtained from the conjugated SARS-CoV-2 N protein and to enhance the assay detection limit. To validate the performance of the adopted lateral flow, serum from SARS-CoV-2 seropositive individuals and prepandamic negative samples are tested and compared to a validated enzyme-linked immunosorbent assay (ELISA) for the detection of SARS-CoV-2 N protein specific IgG and IgM antibodies. The data shows that the designed lateral flow assay has an excellent sensitivity and specificity upon detecting IgM and IgG antibodies by applying only 2 µL from the serum sample to the adopted strips. Taken together, the developed lateral flow immunoassay assay provides a rapid, specific, and highly sensitive means to detect the immune responses against SARS-CoV-2 with only 2 µL from the serum sample.

4.
Front Immunol ; 12: 785349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095861

RESUMO

SARS-CoV-2 infections present a tremendous threat to public health. Safe and efficacious vaccines are the most effective means in preventing the infections. A variety of vaccines have demonstrated excellent efficacy and safety around the globe. Yet, development of alternative forms of vaccines remains beneficial, particularly those with simpler production processes, less stringent storage conditions, and the capability of being used in heterologous prime/boost regimens which have shown improved efficacy against many diseases. Here we reported a novel DNA vaccine comprised of the SARS-CoV-2 spike protein fused with CD40 ligand (CD40L) serving as both a targeting ligand and molecular adjuvant. A single intramuscular injection in Syrian hamsters induced significant neutralizing antibodies 3-weeks after vaccination, with a boost substantially improving immune responses. Moreover, the vaccine also reduced weight loss and suppressed viral replication in the lungs and nasal turbinates of challenged animals. Finally, the incorporation of CD40L into the DNA vaccine was shown to reduce lung pathology more effectively than the DNA vaccine devoid of CD40L. These results collectively indicate that this DNA vaccine candidate could be further explored because of its efficacy and known safety profile.


Assuntos
Ligante de CD40/imunologia , COVID-19/imunologia , Mesocricetus/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Linhagem Celular , Feminino , Células HEK293 , Humanos , Pulmão/imunologia , Pulmão/virologia , Mesocricetus/virologia , Modelos Animais , Vacinação/métodos , Vacinas de Produtos Inativados/imunologia
5.
Viruses ; 12(12)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291713

RESUMO

The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Antigen-specific responses are of unquestionable value for clinical management of COVID-19 patients. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized COVID-19 patients with different disease presentations (i.e., mild, moderate or severe), need for intensive care units (ICU) admission or outcomes (i.e., survival vs death). We show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Interestingly, significantly higher levels of nAbs as well as anti-S1 and -N IgG and IgM antibodies were found in patients with more severe symptoms, patients requiring admission to ICU or those with fatal outcomes. More importantly, early after symptoms onset, we found that the levels of anti-N antibodies correlated strongly with disease severity. Collectively, these findings provide new insights into the kinetics of antibody responses in COVID-19 patients with different disease severity.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Imunidade Humoral , Imunoglobulina G/sangue , Anticorpos Neutralizantes/sangue , COVID-19/diagnóstico , Hospitalização , Humanos , Imunoglobulina M/sangue , Cinética , Estudos Longitudinais , Testes de Neutralização , Proteínas do Nucleocapsídeo/imunologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia
6.
Sci Rep ; 10(1): 16561, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024213

RESUMO

As the Coronavirus Disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2, continues to spread rapidly around the world, there is a need for well validated serological assays that allow the detection of viral specific antibody responses in COVID-19 patients or recovered individuals. In this study, we established and used multiple indirect Enzyme Linked Immunosorbent Assay (ELISA)-based serological assays to study the antibody response in COVID-19 patients. In order to validate the assays we determined the cut off values, sensitivity and specificity of the assays using sera collected from pre-pandemic healthy controls, COVID-19 patients at different time points after disease-onset, and seropositive sera to other human coronaviruses (CoVs). The developed SARS-CoV-2 S1 subunit of the spike glycoprotein and nucleocapsid (N)-based ELISAs not only showed high specificity and sensitivity but also did not show any cross-reactivity with other CoVs. We also show that all RT-PCR confirmed COVID-19 patients tested in our study developed both virus specific IgM and IgG antibodies as early as week one after disease onset. Our data also suggest that the inclusion of both S1 and N in serological testing would capture as many potential SARS-CoV-2 positive cases as possible than using any of them alone. This is specifically important for tracing contacts and cases and conducting large-scale epidemiological studies to understand the true extent of virus spread in populations.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Proteínas do Nucleocapsídeo/imunologia , Pneumonia Viral/diagnóstico , Soroconversão , Testes Sorológicos/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Betacoronavirus/genética , COVID-19 , Estudos de Coortes , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Pandemias , Fosfoproteínas , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...