Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 699: 395-417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942512

RESUMO

Expression and purification of membrane-bound proteins remains a challenge and limits enzymology efforts, contributing to a substantial knowledge gap in the biochemical functions of many proteins found in nature. Accordingly, the study of bacterial UbiA terpene synthases (TSs) has been limited due to the experimental hurdles required to purify active enzymes for characterization in vitro. Previous work employed the use of microsomes or crude membrane fractions to test enzyme activity; however, these methods can be labor intensive, require access to an ultracentrifuge, or may not be suitable for all membrane-bound TSs. We detail here an alternative strategy for the in vivo expression and biochemical characterization of the membrane associated UbiA TSs by employing a precursor overproduction system in Escherichia coli.


Assuntos
Alquil e Aril Transferases , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
2.
J Am Chem Soc ; 145(41): 22361-22365, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37813821

RESUMO

Biosynthetic modifications of the 6/10-bicyclic hydrocarbon skeletons of the eunicellane family of diterpenoids are unknown. We explored the biosynthesis of a bacterial trans-eunicellane natural product, albireticulone A (3), and identified a novel isomerase that catalyzes cryptic isomerization in the biosynthetic pathway. We also assigned functions of two cytochromes P450 that oxidize the eunicellane skeleton, one of which was a naturally evolved non-functional P450 that, when genetically repaired, catalyzes allylic oxidation. Finally, we described the chemical susceptibility of the trans-eunicellane skeleton to undergo Cope rearrangement to yield inseparable atropisomers.


Assuntos
Sistema Enzimático do Citocromo P-450 , Diterpenos , Isomerismo , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/metabolismo , Oxirredução , Bactérias/metabolismo
3.
Nucleic Acids Res ; 50(D1): D1317-D1323, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718710

RESUMO

Within the natural products field there is an increasing emphasis on the study of compounds from microbial sources. This has been fuelled by interest in the central role that microorganisms play in mediating both interspecies interactions and host-microbe relationships. To support the study of natural products chemistry produced by microorganisms we released the Natural Products Atlas, a database of known microbial natural products structures, in 2019. This paper reports the release of a new version of the database which includes a full RESTful application programming interface (API), a new website framework, and an expanded database that includes 8128 new compounds, bringing the total to 32 552. In addition to these structural and content changes we have added full taxonomic descriptions for all microbial taxa and have added chemical ontology terms from both NP Classifier and ClassyFire. We have also performed manual curation to review all entries with incomplete configurational assignments and have integrated data from external resources, including CyanoMetDB. Finally, we have improved the user experience by updating the Overview dashboard and creating a dashboard for taxonomic origin. The database can be accessed via the new interactive website at https://www.npatlas.org.


Assuntos
Produtos Biológicos/classificação , Bases de Dados Factuais , Interações entre Hospedeiro e Microrganismos/genética , Software , Bactérias/classificação , Classificação , Fungos/classificação , Humanos , Interface Usuário-Computador
4.
ACS Catal ; 11(10): 5906-5915, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34796043

RESUMO

The biosynthesis of terpenoid natural products begins with a carbocation-based cyclization or prenylation reaction. While these reactions are mechanistically similar, there are several families of enzymes, namely terpene synthases and prenyltransferases, that have evolved to specifically catalyze terpene cyclization or prenylation reactions. Here, we report that bacterial diterpene synthases, enzymes that are traditionally considered to be specific for cyclization, are capable of efficiently catalyzing both diterpene cyclization and the prenylation of small molecules. We investigated this unique dual reactivity of terpene synthases through a series of kinetic, biocatalytic, structural, and bioinformatics studies. Overall, this study unveils the ability of terpene synthases to catalyze C-, N-, O-, and S-prenylation on small molecules, proposes a substrate decoy mechanism for prenylation by terpene synthases, supports the physiological relevance of terpene synthase-catalyzed prenylation in vivo, and addresses questions regarding the evolution of prenylation function and its potential role in natural products biosynthesis.

5.
Nat Prod Rep ; 38(5): 905-980, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33169126

RESUMO

Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.


Assuntos
Bactérias/química , Terpenos/química , Produtos Biológicos/química , Vias Biossintéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...