Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(3): 2786-2797, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35097275

RESUMO

In the present work, the aim is to synthesize reduced graphene oxide (rGO) and zinc:reduced graphene oxide composite catalysts (ZnO:rGO) for esterification of acetic acid with n-heptanol. The physical and chemical characteristics of the rGO and rGO-metal oxide composite catalysts such as textural surface characteristics, surface morphology, thermal stability, functional groups, and elemental analysis were studied. The surface areas of rGO, ZnO(0.5 M), and ZnO(1 M) were recorded, respectively, at 31.72, 27.65, and 36.19 m2 g-1. Furthermore, esterification reaction parameters such as the reaction time, catalyst dosage, and reaction temperature for acetic acid were optimized to check the feasibility of rGO-metal oxide composites for a better conversion percentage of acetic acid. The optimized catalyst was selected for further optimization, and the optimum reaction parameters found were 0.1 wt % of catalyst, 160 min reaction duration, and 100 °C reaction temperature with a maximal yield of 100%. At 110 °C, the reaction conducted in the presence of 0.1 g of catalyst displayed more yield than the uncatalyzed reaction.

2.
Sci Rep ; 10(1): 20229, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214687

RESUMO

Herein, a facile green synthesis route was reported for the synthesis of Ag-ZnO nanocomposites using potato residue by simple and cost effective combustion route and investigated the photocatalytic degradation of methylene blue (MB) dye. In the preparation potato extract functioned as a biogenic reducing as well as stabilizing agent for the reduction of Ag + , thus eliminating the need for conventional reducing/stabilizing agents. Ag-ZnO nanocomposites with different Ag mass fractions ranging from 2 to 10% were characterized by using XRD, FT-IR, XPS, SEM, TEM, and UV-Vis spectroscopy. XRD analysis revealed that the as prepared Ag-ZnO nanocomposites possessed high crystallinity with hexagonal wurtzite structure. TEM and SEM images showed that the Ag-ZnO nanocomposites in size ranging from 15 to 25 nm have been obtained, and the particle size was found to increase with the increase in percentage of Ag. FTIR results confirmed the characteristics band of ZnO along with the Ag bands. XPS analysis revealed a pair of doublet with peaks corresponding to Ag and a singlet with peaks corresponding to ZnO. With the increase of concentration of Ag in ZnO, the intensity of NBE emission in the PL spectra was observed to be decrease, resulted to the high photocatalytic activity. Photocatalytic properties of Ag-ZnO nanocomposites evaluated against the MB dye under visible-light irradiation showed superior photodegradation of ~ 96% within 80 min for 2% Ag-ZnO nanocomposites. The apparent reaction rate constant for 2% Ag-ZnO nanocomposites was higher than that of other nanocomposites, which proved to be the best photocatalyst for the maximum degradation of MB. Furthermore, various functional parameters such as dosing, reaction medium, concentration variation were performed on it for better understanding. The enhancement in photocatalytic degradation might be due to the presence of Ag nanoparticles on the surface of ZnO by minimizing the recombination of photo induced charge carriers in the nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...