Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900733

RESUMO

Based on the CRISP theory (Content Representation, Intrinsic Sequences, and Pattern completion), we present a computational model of the hippocampus that allows for online one-shot storage of pattern sequences without the need for a consolidation process. In our model, CA3 provides a pre-trained sequence that is hetero-associated with the input sequence, rather than storing a sequence in CA3. That is, plasticity on a short timescale only occurs in the incoming and outgoing connections of CA3, not in its recurrent connections. We use a single learning rule named Hebbian descent to train all plastic synapses in the network. A forgetting mechanism in the learning rule allows the network to continuously store new patterns while forgetting those stored earlier. We find that a single cue pattern can reliably trigger the retrieval of sequences, even when cues are noisy or missing information. Furthermore, pattern separation in subregion DG is necessary when sequences contain correlated patterns. Besides artificially generated input sequences, the model works with sequences of handwritten digits and natural images. Notably, our model is capable of improving itself without external input, in a process that can be referred to as 'replay' or 'offline-learning', which helps in improving the associations and consolidating the learned patterns.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Humanos , Plasticidade Neuronal , Aprendizagem , Hipocampo/fisiologia , Sinapses/fisiologia
2.
Neural Comput ; 34(9): 1841-1870, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35896150

RESUMO

Many studies have suggested that episodic memory is a generative process, but most computational models adopt a storage view. In this article, we present a model of the generative aspects of episodic memory. It is based on the central hypothesis that the hippocampus stores and retrieves selected aspects of an episode as a memory trace, which is necessarily incomplete. At recall, the neocortex reasonably fills in the missing parts based on general semantic information in a process we call semantic completion. The model combines two neural network architectures known from machine learning, the vector-quantized variational autoencoder (VQ-VAE) and the pixel convolutional neural network (PixelCNN). As episodes, we use images of digits and fashion items (MNIST) augmented by different backgrounds representing context. The model is able to complete missing parts of a memory trace in a semantically plausible way up to the point where it can generate plausible images from scratch, and it generalizes well to images not trained on. Compression as well as semantic completion contribute to a strong reduction in memory requirements and robustness to noise. Finally, we also model an episodic memory experiment and can reproduce that semantically congruent contexts are always recalled better than incongruent ones, high attention levels improve memory accuracy in both cases, and contexts that are not remembered correctly are more often remembered semantically congruently than completely wrong. This model contributes to a deeper understanding of the interplay between episodic memory and semantic information in the generative process of recalling the past.


Assuntos
Memória Episódica , Atenção , Rememoração Mental , Semântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...