Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(11): 104115, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39303323

RESUMO

The widespread use of antibiotics causes the development of antibiotic-resistant bacterial strains, which have a severe impact on poultry productivity and human health. As a result, research is continuing to develop safe natural antibiotic alternatives. In the current study, Bacillus pumilus SA388 was isolated from the chicken feces and confirmed to be a probiotic. The selected strain was tested for its antimutagenic and antioxidant capabilities before being employed as a probiotic food supplement and antibiotic alternative. The effect of B. pumilus SA388 impact on broiler chickens' growth performance, gut microbiome, blood biochemical markers, immunological response, and meat quality was also studied. B. pumilus SA388 showed significant bactericidal activity against Streptococcus pyogenes, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella typhi, and Klebsiella pneumonia. A total of 200 chickens were used in the present study, divided equally among four experimental groups (ten birds per group with 5 replicates): group 1 (control, G1) received a basal diet without B. pumilus SA388, group 2 (G2) received a basal diet supplemented with 0.4 mg/kg of B. pumilus SA388, group 3 (G3) received a basal diet supplemented with 0.8 mg/kg of B. pumilus SA388, and group 4 (G4) received a basal diet supplemented with 1.6 mg/kg of B. pumilus SA388. Over 35 d, the B. pumilus SA388-supplemented groups outperformed the G1 in terms of body weight gain, performance index, and feed conversion ratio, with a preference for the G4 treatment. The levels of alanine aminotransferase (ALT), aspartate transaminase (AST), low-density lipoprotein (LDL), and total cholesterol decreased significantly (P < 0.05) with increasing B. pumilus SA388 dosages compared to the control G1 group. Dietary supplementation of B. pumilus SA388 at 1.6 mg/kg (G4) significantly (P < 0.05) resulted in improved lipid profile, immunological response, thyroid function, and gut microbiota compared to the control group (G1). Compared to the broilers in the control treatment (G1), the addition of B. pumilus SA388 to broilers in G4 significantly (P < 0.05) enhanced juiciness, tenderness, aroma, and taste. Adding B. pumilus SA388 to chicken feed at different doses significantly (P < 0.05) decreased average feed intake while increasing economic and relative efficiency measures. In conclusion, B. pumilus SA388 has been proven to be an effective antibiotic and nutritional supplement.


Assuntos
Ração Animal , Bacillus pumilus , Galinhas , Dieta , Microbioma Gastrointestinal , Carne , Probióticos , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Galinhas/fisiologia , Probióticos/administração & dosagem , Probióticos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Carne/análise , Ceco/microbiologia , Análise Química do Sangue/veterinária , Suplementos Nutricionais/análise , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Masculino , Distribuição Aleatória
2.
Poult Sci ; 103(10): 104089, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142030

RESUMO

Avian chlamydiosis is a serious avian infection that carries a significant zoonotic danger to the poultry industry. The respiratory co-infections caused by the low pathogenic avian influenza virus H9N2 (LPAIV H9N2) also cause significant financial losses in the poultry industry. The purpose of this study was to examine the pathogenicity of Chlamydophila psittaci, and LPAIV H9N2 individually and in combination in broiler chickens, as well as to determine whether or not aqueous neem (Azadirachta indica) leaf extract is effective against infections caused by these pathogens. Therefore, 120 broiler cobb chicks were equally divided into 4 groups (30 birds each) with triplicates with 10 birds. Broilers in group 1 (G1) were infected with only C. psittaci, broilers in group 2 (G2) were infected with only LPAIV H9N2, broilers in group 3 (G3) were infected with C. psittaci and LPAIV H9N2, and broilers in group 4 (G4) remained not challenged and non-treated with any therapeutic or preventive treatment (negative control). At 21 d postinfection (dpi), birds in G1, G2, and G3 were divided into 3 subgroups of 10 birds each: subgroup (A) remained infected and untreated (positive control), subgroup (B) infected and received oxytetracycline for 5 consecutive d, and subgroup (C) infected and received 8% aqueous neem leaf extract for 5 consecutive d. The multiplication of C. psittaci in birds in G1, in various tissues was evaluated using Giemsa staining and the data showed that multiplication was much higher in the lung, spleen, and liver from 6 h to 21 dpi, but low in the heart from 8 to 21 dpi. During simultaneous co-infection in G3, the birds developed significant clinical symptoms and postmortem lesions (PM). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect viral shedding from oropharyngeal and cloacal swabs between 2 dpi and 8 dpi, with cycle threshold (CT) values ranging from 22 to 24. In contrast, bacterial shedding began 6 h after infection and continued until 21 dpi, with CT values ranging from 23 to 26. Administration of an aqueous neem leaf extract at an 8% concentration (Group C) resulted in a numerical rise in average body weight across all treatment groups in the third and fourth week, as well as a reduction in LPAIV H9N2 and C. psittaci replication in the respiratory and gut of treated birds compared to those treated with oxytetracycline (Group B). Overall, respiratory co-infections pose a considerable risk to the poultry business, which is a big threat. To control C. psittaci and LPAIV H9N2 in broiler chickens, oral supplementation of 8% aqueous neem leaf extract is recommended. This treatment improves the birds' performance, as evidenced by an increase in their average body weight. In addition, the application of 8% aqueous neem leaf extract lowers C. psittaci replication within tissues and diminishes LPAIV H9N2 shedding.


Assuntos
Azadirachta , Galinhas , Chlamydophila psittaci , Coinfecção , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Extratos Vegetais , Folhas de Planta , Doenças das Aves Domésticas , Psitacose , Animais , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Coinfecção/veterinária , Coinfecção/tratamento farmacológico , Influenza Aviária/tratamento farmacológico , Influenza Aviária/virologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/virologia , Chlamydophila psittaci/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Azadirachta/química , Psitacose/veterinária , Psitacose/tratamento farmacológico , Folhas de Planta/química
3.
Front Bioeng Biotechnol ; 11: 1283898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162186

RESUMO

Biogenic Zinc oxide (ZnO) nanoparticles (NPs) were synthesized from Celosia argentea (C. argentea) plant extract. Structural analysis confirms the successful synthesis of biogenic zinc oxide NPs from C. argentea extract. The biogenic ZnO NPs have an average particle size of 21.55 ± 4.73 nm, a semispherical shape, and a specific surface area of about 50 m2/g. The biogenic ZnO NPs have a powerful radical scavenging activity (Ic50 = 91.24 mg/ml) comparable to ascorbic acid (ASC) as a standard (Ic50 = 14.37 mg/ml). The antibacterial efficacy was tested against gram-positive and gram-negative bacteria using an agar disc diffusion method. Gram-positive strains with biogenic ZnO NPs have a greater bactericidal impact than gram-negative strains in a concentration-dependent manner. Anticancer activity against Liver hepatocellular cells (HepG2) and Human umbilical vein endothelial cells (HUVEC) was evaluated using a [3-(4,5-dimethylthiazol-2-yl)-2,5diphenyl tetrazolium bromide] (MTT) assay. The results reflect the concentration-dependent cytotoxic effect of biogenic ZnO NPs against HepG2 cells even at low concentrations (Ic50 = 49.45 µg/ml) compared with doxorubicin (Ic50 = 14.67 µg/ml) and C. argentea extract (Ic50 = 112.24 µg/ml). The cell cycle and gene expression were analyzed to determine the potential anticancer mechanism. The flow cytometric analysis of the cell cycle revealed that biogenic ZnO NPs induce oxidative stress that activates the apoptotic genes NF-κB, CY-C, and P53, leading to cell death. The Celosia argentea improved the antioxidant, antibacterial, and anticancer activities of ZnO NPs without altering their structural properties. The effect of green synthesis on the bioactivity of biogenic ZnO NPs in vivo is recommended for future work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA