Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Skin Pharmacol Physiol ; 35(2): 102-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34619676

RESUMO

INTRODUCTION: Xerosis cutis is characterized by a decreased stratum corneum (SC) hydration and an impaired skin barrier function. Urea, the most prevalent natural moisturizing factor (NMF), is currently considered the gold standard. Its efficacy can further be increased by combining urea with other NMF and skin barrier lipids (SBLs). OBJECTIVE: We set out to evaluate physiological effects of a novel functional moisturizer containing 10% urea, additional NMF components, and a combination of SBLs on skin hydration and skin barrier integrity on a cellular and phenotypic level in female volunteers suffering from xerosis. METHODS: Two double-blind, vehicle-controlled clinical studies were conducted. In the first study, 44 female subjects having very dry body skin applied the moisturizer or its vehicle twice daily to their volar forearms. Twenty-four hours after a single product application as well as 24 h after 2 weeks of treatment, SC hydration was measured by corneometry. Skin barrier function was assessed by transepidermal water loss 24 h and 48 h after 2 weeks of regular use. Twenty-four hours after 2 weeks of application, skin tape stripping was performed, and urea content was determined in the 3rd strip by means of high-performance liquid chromatography/tandem mass spectrometry. In the second study, 22 women with self-reported very dry skin applied the moisturizer or vehicle twice daily to their volar forearms for 2 weeks. Then, suction blister samples were obtained for gene expression analysis using RT-PCR. RESULTS: Application of the actives led to significantly improved skin hydration and barrier function at all points in time. Compared to the vehicle, application of the moisturizer for 2 weeks resulted in a significant increase in SC urea content. Relative gene expression data revealed significant upregulation of genes associated with skin barrier function, hydration, differentiation, and lipid metabolism compared to the vehicle-treated area. CONCLUSIONS: Overall, our data demonstrate that the functional moisturizer provides an adequate bioavailability of urea and a beneficial biophysical impact on xerotic skin. Topical treatment with a combination of urea and additional NMF as well as SBL can modify mRNA expression of important epidermal genes stimulating cellular processes and functions. The well-tolerated novel functional moisturizer stimulates molecular mechanisms involved in skin hydration and barrier function and is a profoundly effective treatment option for xerosis cutis.


Assuntos
Biomimética , Dermatopatias , Epiderme/metabolismo , Feminino , Expressão Gênica , Humanos , Pele/metabolismo , Dermatopatias/metabolismo
2.
J Investig Dermatol Symp Proc ; 10(3): 243-6, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16382674

RESUMO

In this study, it was investigated how estrogens (17-beta-estradiol, E2) affect the estrogen receptor (ER) expression and gene regulation of male versus female human scalp hair follicles in vitro. Anagen VI follicles from frontotemporal scalp skin were microdissected and organ-cultured for up to 9 d in the presence of E2 (1-100 nm). Immunohistochemistry was performed for ERbeta-expression, known to be predominant in human scalp hair follicles, and for TGF-beta2-expression (as negative key hair growth modulator), and E2-responsive genes in organ-cultured human scalp hair follicles (48 h, 10 nM) were explored by cDNA microarray, using a commercial skin focus chip (Memorec, Cologne, Germany). The distribution pattern of ERbeta and TGF-beta2-immunoreactivity differed between male and female hair follicles after 48 h culture. Of 1300 genes tested, several genes were regulated sex-dependent differently. The study reveals substantial sex-dependent differences in the response of frontotemporal human scalp hair follicles to E2. Recognition and systematic dissection of the E2-dependent gene regulation will be crucial for the development of more effective, gender-tailored management strategies for female versus male pattern balding.


Assuntos
Estradiol/metabolismo , Receptor beta de Estrogênio/metabolismo , Folículo Piloso/metabolismo , Couro Cabeludo/metabolismo , Alopecia/metabolismo , Alopecia/terapia , Estrogênios/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Caracteres Sexuais , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA