Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37846312

RESUMO

Management of deep-sea fisheries in areas beyond national jurisdiction by Regional Fisheries Management Organizations/Arrangements (RFMO/As) requires identification of areas with Vulnerable Marine Ecosystems (VMEs). Currently, fisheries data, including trawl and longline bycatch data, are used by many RFMO/As to inform the identification of VMEs. However, the collection of such data creates impacts and there is a need to collect non-invasive data for VME identification and monitoring purposes. Imagery data from scientific surveys satisfies this requirement, but there currently is no established framework for identifying VMEs from images. Thus, the goal of this study was to bring together a large international team to determine current VME assessment protocols and establish preliminary global consensus guidelines for identifying VMEs from images. An initial assessment showed a lack of consistency among RFMO/A regions regarding what is considered a VME indicator taxon, and hence variability in how VMEs might be defined. In certain cases, experts agreed that a VME could be identified from a single image, most often in areas of scleractinian reefs, dense octocoral gardens, multiple VME species' co-occurrence, and chemosynthetic ecosystems. A decision flow chart is presented that gives practical interpretation of the FAO criteria for single images. To further evaluate steps of the flow chart related to density, data were compiled to assess whether scientists perceived similar density thresholds across regions. The range of observed densities and the density values considered to be VMEs varied considerably by taxon, but in many cases, there was a statistical difference in what experts considered to be a VME compared to images not considered a VME. Further work is required to develop an areal extent index, to include a measure of confidence, and to increase our understanding of what levels of density and diversity correspond to key ecosystem functions for VME indicator taxa. Based on our results, the following recommendations are made: 1. There is a need to establish a global consensus on which taxa are VME indicators. 2. RFMO/As should consider adopting guidelines that use imagery surveys as an alternative (or complement) to using bycatch and trawl surveys for designating VMEs. 3. Imagery surveys should also be included in Impact Assessments. And 4. All industries that impact the seafloor, not just fisheries, should use imagery surveys to detect and identify VMEs.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Pesqueiros
2.
Mar Pollut Bull ; 193: 115196, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421917

RESUMO

As oil and gas infrastructure comes to the end of its working life, a decommissioning decision must be made: should the infrastructure be abandoned in situ, repurposed, partially removed, or fully removed? Environmental contaminants around oil and gas infrastructure could influence these decisions because contaminants in sediments could degrade the value of the infrastructure as habitat, enter the seafood supply if the area is re-opened for commercial and/or recreational fishing, or be made biologically available as sediment is resuspended when the structures are moved. An initial risk hypothesis, however, may postulate that these concerns are only relevant if contaminant concentrations are above screening values that predict the possibility of environmental harm or contaminant bioaccumulation. To determine whether a substantive contaminants-based risk assessment is needed for infrastructure in the Gippsland Basin (South-eastern Australia), we measured the concentration of metals and polycyclic aromatic hydrocarbons (PAHs) in benthic sediments collected around eight platforms earmarked for decommissioning. The measurements were compared to preset screening values and to background contaminant concentrations in reference sites. Lead (Pb), zinc (Zn), PAHs and other contaminants were occasionally measured at concentrations that exceeded reference values, most often within 150 m of the platforms. The exceedance of a few screening values by contaminants at some platforms indicates that these platforms require further analysis to determine the contaminant risks associated with any decommissioning option.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/análise , Monitoramento Ambiental , Sedimentos Geológicos/química , Metais/análise , Austrália , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
3.
J Fish Biol ; 102(6): 1455-1469, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36960821

RESUMO

Egg case nurseries of the boreal skate (Amblyraja hyperborea) and Richardson's skate (Bathyraja richardsoni) were defined and mapped on a bathyal seascape (c. 500-1900 m depths) south of Tasmania, Australia, using 99 towed-camera transects (157 linear km; N = 50,858 images). In total, 738 skate egg cases were observed (present in 240 images, absent in 50,618); among 113 egg cases examined to identify parent species, 70% were A. hyperborea, 10% B. richardsoni and 20% unidentified Bathyraja species. "Recently laid" egg cases were differentiated from "aged" ones by classifying their colour and condition. The great majority (98%) of egg cases were observed in c. 1100-1400 m depths on seamounts (15 of 36 surveyed), not seamount bases or adjacent continental slope. Egg cases were associated with reefs formed by accumulated skeletal matrix of the stony coral Solenosmilia variabilis, with >90% egg cases (including most of those recently laid) observed on living S. variabilis that characterises a "coral zone" in c. 950-1350 m depths. Water in the coral zone is warmer (+0.66 to 2.37°C) than at the deep distributional limits of adult A. hyperborea and B. richardsoni (2000 and 3000 m, respectively), potentially providing for accelerated embryonic development. Co-occurrence with living coral infers an energetically favourable local-scale hydrodynamic environment for egg cases, particularly on seamount peaks, where increased water flow over egg cases would avert smothering by suspended sediment, and compensate for lower oxygen concentration compared to deeper depths occupied by adult skates. Criteria identifying egg case nurseries are strongly met for A. hyperborea at Seamount Z110 (468 egg cases of varied ages, maximum density of 5.47 m-2 ) and to a lesser extent on five others (Seamounts K1, Z16, Hill U, Z5 and Hill V). An abundance (density) criterion for defining nurseries needs to be flexible because it is a spatially scale-dependent measure that differs between surveys according to the tools and design employed. Off Australia, coral reef egg case nursery habitat is restricted to a narrow depth range in temperate latitudes where it is scarce and impacted by historical bottom trawl fishing in many locations. There has been effective conservation of nursery habitat, however, because four of the six nursery sites identified here and extensive coral reef areas are protected within marine parks.


Assuntos
Antozoários , Rajidae , Animais , Recifes de Corais , Ecossistema , Rajidae/crescimento & desenvolvimento , Água
4.
PLoS One ; 15(11): e0241066, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33175888

RESUMO

One of the most remarkable groups of deep-sea squids is the Magnapinnidae, known for their large fins and strikingly long arm and tentacle filaments. Little is known of their biology and ecology as most specimens are damaged and juvenile, and in-situ sightings are sparse, numbering around a dozen globally. As part of a recent large-scale research programme in the Great Australian Bight, Remotely Operated Vehicles and a towed camera system were deployed in depths of 946-3258 m resulting in five Magnapinna sp. sightings. These represent the first records of Bigfin Squid in Australian waters, and more than double the known records from the southern hemisphere, bolstering a hypothesis of cosmopolitan distribution. As most previous observations have been of single Magnapinna squid these multiple sightings have been quite revealing, being found in close spatial and temporal proximity of each other. Morphological differences indicate each sighting is of an individual rather than multiple sightings of the same squid. In terms of morphology, previous in-situ measurements have been roughly based on nearby objects of known size, but this study used paired lasers visible on the body of a Magnapinna squid, providing a more accurate scaling of size. Squid of a juvenile size were also recorded and are confirmed to possess the long distal filaments which have thus far been mostly missing from specimens due to damage. We have described fine-scale habitat, in-situ colouration, and behavioural components including a horizontal example of the 'elbow' pose, and coiling of distal filaments: a behaviour not previously seen in squid. These sightings add to our knowledge of this elusive and intriguing genus, and reinforce the value of imagery as a tool in deep-sea squid research.


Assuntos
Distribuição Animal , Comportamento Animal/fisiologia , Decapodiformes/fisiologia , Animais , Austrália , Técnicas de Observação do Comportamento/instrumentação , Técnicas de Observação do Comportamento/métodos , Decapodiformes/anatomia & histologia , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Gravação em Vídeo
5.
Proc Natl Acad Sci U S A ; 115(43): E10275-E10282, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297399

RESUMO

Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.


Assuntos
Pesqueiros/estatística & dados numéricos , Alaska , Animais , Austrália , Biodiversidade , Chile , Ecossistema , Invertebrados/fisiologia , Nova Zelândia , Oceanos e Mares , Alimentos Marinhos/estatística & dados numéricos
6.
Ecol Evol ; 8(23): 11423-11433, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598746

RESUMO

AIM: To document biogeographic patterns in the deepwater benthic epifauna and demersal fishes of southern Australia, and determine whether museum records and systematic survey data provide matching results. LOCATION: Southern Australian (32-44oS) continental slope (200-3,000 m deep). TAXON: Marine benthic fauna (Arthropoda, Bryozoa, Cnidaria, Echinodermata, Mollusca, Porifera, Sipuncula, and fishes). METHODS: All available electronic records of fauna from the above taxa and ≥200 m depth off the southern Australian coastline, regardless of organism size, were collated from Australian museums and checked for geographic and taxonomic consistency. These records were then split into 40 geographic segments of roughly equal numbers, with each segment then treated as a sample in multivariate analyses of assemblage composition. Data from a recent (2015) systematic beam trawl survey along five north-south transects in the central Great Australian Bight were also included for comparison. MAIN CONCLUSIONS: The systematic survey data grouped with the associated geographic segments despite differences in sampling technique (single gear compared to multiple gears), with subsequent differences in taxonomic biases, and the use of a 25 mm mesh, which would undersample some smaller organisms present in the museum data. Thus, the museum data and the survey data provided the same results for the central Great Australian Bight at the level of the whole assemblage. The main biogeographic break occurred off southeastern Tasmania, with a second substantial break occurring at around the border between New South Wales and Victoria. This indicates the potential for unused museum data to describe biogeographic patterns over regional spatial scales, especially in the deep sea where the expense of collecting new data is relatively high.

7.
PLoS One ; 10(10): e0141039, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509918

RESUMO

Imagery collected by still and video cameras is an increasingly important tool for minimal impact, repeatable observations in the marine environment. Data generated from imagery includes identification, annotation and quantification of biological subjects and environmental features within an image. To be long-lived and useful beyond their project-specific initial purpose, and to maximize their utility across studies and disciplines, marine imagery data should use a standardised vocabulary of defined terms. This would enable the compilation of regional, national and/or global data sets from multiple sources, contributing to broad-scale management studies and development of automated annotation algorithms. The classification scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) project provides such a vocabulary. The CATAMI classification scheme introduces Australian-wide acknowledged, standardised terminology for annotating benthic substrates and biota in marine imagery. It combines coarse-level taxonomy and morphology, and is a flexible, hierarchical classification that bridges the gap between habitat/biotope characterisation and taxonomy, acknowledging limitations when describing biological taxa through imagery. It is fully described, documented, and maintained through curated online databases, and can be applied across benthic image collection methods, annotation platforms and scoring methods. Following release in 2013, the CATAMI classification scheme was taken up by a wide variety of users, including government, academia and industry. This rapid acceptance highlights the scheme's utility and the potential to facilitate broad-scale multidisciplinary studies of marine ecosystems when applied globally. Here we present the CATAMI classification scheme, describe its conception and features, and discuss its utility and the opportunities as well as challenges arising from its use.


Assuntos
Monitoramento Ambiental/métodos , Invertebrados , Algoritmos , Animais , Biota , Conservação dos Recursos Naturais , Ecossistema
8.
Zootaxa ; (3796): 435-52, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24870686

RESUMO

The number of deep-water (>80 m) octocoral species recorded from Australian waters has more than tripled from 135 to 457 following six surveys undertaken between 1997 and 2008 on the deep continental margin of south-eastern, western and north-western Australia and the Tasman Sea.  This rapid increase in knowledge follows a slow accumulation of records since the earliest collections were made by vessels such as the Géographe and the Naturaliste in the early years of the 19 century. Consistent identification and alpha-labelling of the octocoral fauna between surveys has permitted a multi-region description and comparison.  We detail the identities, distributions and regional affinities of 457 octocoral species in 131 genera and 28 families from the orders Alcyonacea and Pennatulacea, including 69 new species, 17 new genera and 43 first records for Australia. Five of the more common genera were widely distributed (present at 35 and 66 sampling stations spanning all of the 4 survey regions), but two were restricted to south-eastern Australia-Pleurogorgia Versluys, 1902 and Tokoprymno Bayer, 1996-and were only sampled from depths below 700 m.  The great majority of species (81%) and nearly half of all genera (47%) were only sampled once or twice.  The highest average number of species per sampling station (3.2) was reported from the outer shelf. The proportion of new species was highest (22%) on the upper and lower slope bathomes, intermediate (13-15%) on the mid-slope bathome and lowest (8%) on the outer shelf bathome.  Species overlap between bathomes was low, but all families were shared across bathomes. Most described species (55 of 69) have an Indo-West Pacific affinity, 20 have an Indian Ocean affinity, while three were previously recorded from the Atlantic Ocean only; 20 appear to be Australian endemics. Octocorals can now be added to an emerging set of taxon-specific data sets-including fishes, ophiuroids and galatheids-that permit regional-scale analysis of biodiversity distributions to support Australia's efforts in marine conservation management. However, because so much of the world octocoral literature is inadequate for accurate identifications to species level, there is a pressing need for taxonomic revisions using modern morphological and molecular techniques to fine-tune the current use of octocorals as indicators of vulnerable marine ecosystems in many national and high seas conservation initiatives.


Assuntos
Antozoários , Biodiversidade , Lista de Checagem , História Natural , Animais , Austrália
9.
PLoS One ; 9(1): e85872, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465758

RESUMO

Assemblages of megabenthos are structured in seven depth-related zones between ∼700 and 4000 m on the rocky and topographically complex continental margin south of Tasmania, southeastern Australia. These patterns emerge from analysis of imagery and specimen collections taken from a suite of surveys using photographic and in situ sampling by epibenthic sleds, towed video cameras, an autonomous underwater vehicle and a remotely operated vehicle (ROV). Seamount peaks in shallow zones had relatively low biomass and low diversity assemblages, which may be in part natural and in part due to effects of bottom trawl fishing. Species richness was highest at intermediate depths (1000-1300 m) as a result of an extensive coral reef community based on the bioherm-forming scleractinian Solenosmilia variabilis. However, megabenthos abundance peaked in a deeper, low diversity assemblage at 2000-2500 m. The S. variabilis reef and the deep biomass zone were separated by an extensive dead, sub-fossil S. variabilis reef and a relatively low biomass stratum on volcanic rock roughly coincident with the oxygen minimum layer. Below 2400 m, megabenthos was increasingly sparse, though punctuated by occasional small pockets of relatively high diversity and biomass. Nonetheless, megabenthic organisms were observed in the vast majority of photographs on all seabed habitats and to the maximum depths observed--a sandy plain below 3950 m. Taxonomic studies in progress suggest that the observed depth zonation is based in part on changing species mixes with depth, but also an underlying commonality to much of the seamount and rocky substrate biota across all depths. Although the mechanisms supporting the extraordinarily high biomass in 2000-2500 m depths remains obscure, plausible explanations include equatorwards lateral transport of polar production and/or a response to depth-stratified oxygen availability.


Assuntos
Antozoários/fisiologia , Biota/fisiologia , Recifes de Corais , Ecossistema , Biologia Marinha/métodos , Animais , Biomassa , Análise por Conglomerados , Fósseis , Geografia , Dinâmica Populacional , Salinidade , Água do Mar/química , Especificidade da Espécie , Tasmânia , Temperatura
10.
PLoS One ; 7(5): e36558, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606271

RESUMO

Understanding patterns of biodiversity in deep sea systems is increasingly important because human activities are extending further into these areas. However, obtaining data is difficult, limiting the ability of science to inform management decisions. We have used three different methods of quantifying biodiversity to describe patterns of biodiversity in an area that includes two marine reserves in deep water off southern Australia. We used biological data collected during a recent survey, combined with extensive physical data to model, predict and map three different attributes of biodiversity: distributions of common species, beta diversity and rank abundance distributions (RAD). The distribution of each of eight common species was unique, although all the species respond to a depth-correlated physical gradient. Changes in composition (beta diversity) were large, even between sites with very similar environmental conditions. Composition at any one site was highly uncertain, and the suite of species changed dramatically both across and down slope. In contrast, the distributions of the RAD components of biodiversity (community abundance, richness, and evenness) were relatively smooth across the study area, suggesting that assemblage structure (i.e. the distribution of abundances of species) is limited, irrespective of species composition. Seamounts had similar biodiversity based on metrics of species presence, beta diversity, total abundance, richness and evenness to the adjacent continental slope in the same depth ranges. These analyses suggest that conservation objectives need to clearly identify which aspects of biodiversity are valued, and employ an appropriate suite of methods to address these aspects, to ensure that conservation goals are met.


Assuntos
Organismos Aquáticos , Biodiversidade , Conservação dos Recursos Naturais , Animais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Ecossistema , Fenômenos Geológicos , Biologia Marinha , Água do Mar , Especificidade da Espécie , Tasmânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...