Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17101, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048605

RESUMO

The fourth energy revolution is characterized by the incorporation of renewable energy supplies into intelligent networks. As the world is shifting towards cleaner energy sources, there is a need for efficient and reliable methods to predict the output of renewable energy plants. Hybrid machine learning modified models are emerging as a promising solution for energy generation prediction. Renewable energy generation plants, such as solar, biogas, hydropower plants, wind farms, etc. are becoming increasingly popular due to their environmental benefits. However, their output can be highly variable and dependent on weather conditions, making integrating them into the existing energy grid challenging. Smart grids with artificial intelligent systems have the potential to solve this challenge by using real-time data to optimize energy production and distribution. Although by incorporating sensors, analytics, and automation, these grids can manage energy demand and supply more efficiently, reducing carbon emissions, increase energy security, and improve access to electricity in remote areas. However, this research aims to enhance the efficiency of solar power generation systems in a smart grid context using machine learning hybrid models such as Hybrid Convolutional-Recurrence Net (HCRN), Hybrid Convolutional-LSTM Net (HCLN), and Hybrid Convolutional-GRU Net (HCGRN). For this purpose, this study considers various parameters of a solar plant such as power production (MWh), irradiance or plane of array (POA), and performance ratio (PR). The HCLN model demonstrates superior accuracy with the RMSE values of 0.012027 for MWh, 0.013734 for POA and 0.003055 for PR, along with the lowest MAE values of 0.069523 for MWh, 0.082813 for POA, and 0.042815 for PR. The obtained results suggest that the proposed machine learning models can effectively enhance the efficiency of solar power generation systems by accurately predicting the required measurements.

2.
Sensors (Basel) ; 23(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631798

RESUMO

In this article, we utilize Digital Twins (DT) with edge networks using blockchain technology for reliable real-time data processing and provide a secure, scalable solution to bridge the gap between physical edge networks and digital systems. Then, we suggest a Federated Learning (FL) framework for collaborative computing that runs on a blockchain and is powered by the DT edge network. This framework increases data privacy while enhancing system security and reliability. The provision of sustainable Resource Allocation (RA) and ensure real-time data-processing interaction between Internet of Things (IoT) devices and edge servers depends on a balance between system latency and Energy Consumption (EC) based on the proposed DT-empowered Deep Reinforcement Learning (Deep-RL) agent. The Deep-RL agent evaluates the performance action based on RA actions in DT to distribute its bandwidth resources to IoT devices based on iteration and the actions taken to generate the best policy and enhance learning efficiency at every step. The simulation results show that the proposed Deep-RL-agent-based DT is able to exploit the best policy, select 47.5% of computing activities that are to be carried out locally with 1 MHz bandwidth and minimize the weighted cost of the transmission policy of edge-computing strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...