Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 40(4): 689-699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395737

RESUMO

OBJECTIVES: Surface characteristics of implant reconstructions determine the gingival fibroblast (GF) response and thus soft tissue integration (STI). However, for monolithic implant reconstructions it is unknown whether the (hybrid) ceramic biomaterial type and its surface treatment affect GF response. Therefore, this investigation examined the influence of the implant reconstruction biomaterials hybrid ceramic (HC), lithium disilicate ceramic (LS), 4 and 5 mol% yttria partially stabilized zirconiumdioxide ceramics (4/5Y-PSZ) and their surface treatment - machining, polishing or glazing - on surface characteristics and GF response. METHODS: After characterization of surface topography and wettability by scanning electron microscopy, interferometry and contact angle measurement, the adhesion, morphology, metabolic activity and proliferation of GFs from six donors was investigated by fluorescent staining and a resazurin-based assay at days 1, 3 and 7. Titanium (Ti) served as control. RESULTS: Biomaterial type and surface treatment affected the GF response in a topography-dependent manner. Smooth polished and glazed surfaces demonstrated enhanced GF adhesion and earlier proliferation onset compared to rough machined surfaces. Due to minor differences in surface topography of polished and glazed surfaces, however, the GF response was similar for polished and glazed HC, LS, 4- and 5Y-PSZ as well as Ti. SIGNIFICANCE: Within the limits of the present investigation, polishing and glazing of machined HC, LS and 4/5Y-PSZ can be recommended to support STI-relevant cell functions in GF. Since the GF response on polished and glazed HC, LS, 4- and 5Y-PSZ surfaces and the Ti control was comparable, this investigation proofed equal cytocompatibility of these surfaces in vitro.


Assuntos
Materiais Biocompatíveis , Implantes Dentários , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Propriedades de Superfície , Porcelana Dentária , Cerâmica , Fibroblastos , Zircônio
2.
J Biomed Mater Res A ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251807

RESUMO

To date, it is unknown whether 3D printed fixed oral implant-supported prostheses can achieve comparable soft tissue integration (STI) to clinically established subtractively manufactured counterparts. STI is mediated among others by gingival fibroblasts (GFs) and is modulated by biomaterial surface characteristics. Therefore, the aim of the present work was to investigate the GF response of a 3D printed methacrylate photopolymer and a hybrid ceramic-filled methacrylate photopolymer for fixed implant-supported prostheses in the sense of supporting an STI. Subtractively manufactured samples made from methacrylate polymer and hybrid ceramic were evaluated for comparison and samples from yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP), comprising well documented biocompatibility, served as control. Surface topography was analyzed by scanning electron microscopy and interferometry, elemental composition by energy-dispersive x-ray spectroscopy, and wettability by contact angle measurement. The response of GFs obtained from five donors was examined in terms of membrane integrity, adhesion, morphogenesis, metabolic activity, and proliferation behavior by a lactate-dehydrogenase assay, fluorescent staining, a resazurin-based assay, and DNA quantification. The results revealed all surfaces were smooth and hydrophilic. GF adhesion, metabolic activity and proliferation were impaired by 3D printed biomaterials compared to subtractively manufactured comparison surfaces and the 3Y-TZP control, whereas membrane integrity was comparable. Within the limits of the present investigation, it was concluded that subtractively manufactured surfaces are superior compared to 3D printed surfaces to support STI. For the development of biologically optimized 3D printable biomaterials, consecutive studies will focus on the improvement of cytocompatibility and the synthesis of STI-relevant extracellular matrix constituents.

3.
Materials (Basel) ; 16(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769968

RESUMO

The aim of this in vitro study was to investigate the effect of hydrogen peroxide (H2O2) on the surface properties of various zirconia-based dental implant materials and the response of human alveolar bone osteoblasts. For this purpose, discs of two zirconia-based materials with smooth and roughened surfaces were immersed in 20% H2O2 for two hours. Scanning electron and atomic force microscopy showed no topographic changes after H2O2-treatment. Contact angle measurements (1), X-ray photoelectron spectroscopy (2) and X-ray diffraction (3) indicated that H2O2-treated surfaces (1) increased in hydrophilicity (p < 0.05) and (2) on three surfaces the carbon content decreased (33-60%), while (3) the monoclinic phase increased on all surfaces. Immunofluorescence analysis of the cell area and DNA-quantification and alkaline phosphatase activity revealed no effect of H2O2-treatment on cell behavior. Proliferation activity was significantly higher on three of the four untreated surfaces, especially on the smooth surfaces (p < 0.05). Within the limitations of this study, it can be concluded that exposure of zirconia surfaces to 20% H2O2 for 2 h increases the wettability of the surfaces, but also seems to increase the monoclinic phase, especially on roughened surfaces, which can be considered detrimental to material stability. Moreover, the H2O2-treatment has no influence on osteoblast behavior.

4.
Nanomaterials (Basel) ; 12(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500895

RESUMO

As the use of zirconia-based nano-ceramics is rising in dentistry, the examination of possible biological effects caused by released nanoparticles on oral target tissues, such as bone, is gaining importance. The aim of this investigation was to identify a possible internalization of differently sized zirconia nanoparticles (ZrNP) into human osteoblasts applying Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), and to examine whether ZrNP exposure affected the metabolic activity of the cells. Since ToF-SIMS has a low probing depth (about 5 nm), visualizing the ZrNP required the controlled erosion of the sample by oxygen bombardment. This procedure removed organic matter, uncovering the internalized ZrNP and leaving the hard particles practically unaffected. It was demonstrated that osteoblasts internalized ZrNP within 24 h in a size-dependent manner. Regarding the cellular metabolic activity, metabolization of alamarBlue by osteoblasts revealed a size- and time-dependent unfavorable effect of ZrNP, with the smallest ZrNP exerting the most pronounced effect. These findings point to different uptake efficiencies of the differently sized ZrNP by human osteoblasts. Furthermore, it was proven that ToF-SIMS is a powerful technique for the detection of zirconia-based nano/microparticles that can be applied for the cell-based validation of clinically relevant materials at the nano/micro scale.

5.
Front Bioeng Biotechnol ; 10: 918866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246375

RESUMO

In oral and maxillofacial bone reconstruction, autografts from the iliac crest represent the gold standard due to their superior clinical performance, compared to autografts derived from other extraoral regions. Thus, the aim of our study was to identify putative differences between osteoblasts derived from alveolar (hOB-A) and iliac crest (hOB-IC) bone of the same donor (nine donors) by means of their molecular properties in 2D and 3D culture. We thereby focused on the gene expression of biomarkers involved in osteogenic differentiation, matrix formation and osteoclast modulation. Furthermore, we examined the transcriptional response to Vit.D3 in hOB-A and hOB-IC. Our results revealed different modulation modes of the biomarker expression in osteoblasts, namely cell origin/bone entity-dependent, and culture configuration- and/or time-dependent modulations. SEMA3A, SPP1, BGLAP and PHEX demonstrated the strongest dependence on cell origin. With respect to Vit.D3-effects, BGLAP, SPP1 and ALPL displayed the highest Vit.D3-responsiveness. In this context we demonstrated that the transcriptional Vit.D3-response concerning SPP1 and ALPL in human osteoblasts depended on the cell origin. The results indicate a higher bone remodeling activity of iliac crest than alveolar osteoblasts and support the growing evidence that a high osteoclast activity at the host-/donor bone interface may support graft integration.

6.
Acta Biomater ; 150: 427-441, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35902036

RESUMO

Dental implants need to combine mechanical strength with promoted osseointegration. Currently used subtractive manufacturing techniques require a multi-step process to obtain a rough surface topography that stimulates osseointegration. Advantageously, additive manufacturing (AM) enables direct implant shaping with unique geometries and surface topographies. In this study, zirconia implants with integrated lamellar surface topography were additively manufactured by nano-particle ink-jetting. The ISO-14801 fracture load of as-sintered implants (516±39 N) resisted fatigue in 5-55 °C water thermo-cycling (631±134 N). Remarkably, simultaneous mechanical fatigue and hydrothermal aging at 90 °C significantly increased the implant strength to 909±280 N due to compressive stress generated at the seamless transition of the 30-40 µm thick, rough and porous surface layer to the dense implant core. This unique surface structure induced an elongated osteoblast morphology with uniform cell orientation and allowed for osteoblast proliferation, long-term attachment and matrix mineralization. In conclusion, the developed AM zirconia implants not only provided high long-term mechanical resistance thanks to the dense core along with compressive stress induced at the transition zone, but also generated a favorable osteoblast response owing to the integrated directional surface pores. STATEMENT OF SIGNIFICANCE: Zirconia ceramics are becoming the material of choice for metal-free dental implants, however significant efforts are required to obtain a rough/porous surface for enhanced osseointegration, along with the risk of surface delamination and/or microstructure variation. In this study, we addressed the challenge by additively manufacturing implants that seamlessly combine dense core with a porous surface layer. For the first time, a unique surface with a directional lamellar pore morphology was additively obtained. This AM implant also provided strength as strong as conventionally manufactured zirconia implants before and after long-term fatigue. Favorable osteoblast response was proved by in-vitro cell investigation. This work demonstrated the opportunity to AM fabricate novel ceramic implants that can simultaneously meet the mechanical and biological functionality requirements.


Assuntos
Implantes Dentários , Teste de Materiais , Osteoblastos , Impressão Tridimensional , Propriedades de Superfície , Titânio/química , Zircônio/química , Zircônio/farmacologia
7.
Proteomics Clin Appl ; 16(5): e2100049, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35462455

RESUMO

PURPOSE: The study aim is a comparative proteome-based analysis of different autologous bone entities (alveolar bone [AB], iliac cortical [IC] bone, and iliac spongiosa [IS]) used for alveolar onlay grafting. EXPERIMENTAL DESIGN: Site-matched bone samples of AB, IC, and IS were harvested during alveolar onlay grafting. Proteins were extracted using a detergent-based (sodium dodecyl sulfate) strategy and trypsinized. Proteome analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used for peptide-to-spectrum matching, peak detection, and quantitation. Linear models for microarray analysis (LIMMA) were used to detect differentially abundant peptides and proteins. RESULTS: A total of 1730 different proteins were identified across the 15 samples at a false discovery rate of 1%. Partial least-squares discriminant analysis approved segregation of AB, IC, and IS protein profiles. LIMMA statistics highlighted 66 proteins that were more abundant in AB then in IC (vs. 92 proteins were enriched in IC over AB). Gene Ontology enrichment analysis revealed a matrisomal versus an immune-related proteome fingerprint in AB versus IC. CONCLUSION AND CLINICAL RELEVANCE: This pilot study demonstrates an ECM protein-related proteome fingerprint in AB and an immune-related proteome fingerprint in IS and IC.


Assuntos
Proteoma , Proteômica , Cromatografia Líquida , Detergentes/análise , Humanos , Projetos Piloto , Proteoma/metabolismo , Proteômica/métodos , Dodecilsulfato de Sódio , Espectrometria de Massas em Tandem
8.
Sci Rep ; 11(1): 17302, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453071

RESUMO

Plasma-treatment of oral implant biomaterials prior to clinical insertion is envisaged as a potential surface modification method for enhanced implant healing. To investigate a putative effect of plasma-functionalized implant biomaterials on oral tissue cells, this investigation examined the response of alveolar bone osteoblasts and gingival fibroblasts to clinically established zirconia- and titanium-based implant surfaces for bone and soft tissue integration. The biomaterials were either functionalized with oxygen-plasma in a plasma-cleaner or left untreated as controls, and were characterized in terms of topography and wettability. For the biological evaluation, the cell adhesion, morphogenesis, metabolic activity and proliferation were examined, since these parameters are closely interconnected during cell-biomaterial interaction. The results revealed that plasma-functionalization increased implant surface wettability. The magnitude of this effect thereby depended on surface topography parameters and initial wettability of the biomaterials. Concerning the cell response, plasma-functionalization of smooth surfaces affected initial fibroblast morphogenesis, whereas osteoblast morphology on rough surfaces was mainly influenced by topography. The plasma- and topography-induced differential cell morphologies were however not strong enough to trigger a change in proliferation behaviour. Hence, the results indicate that oxygen plasma-functionalization represents a possible cytocompatible implant surface modification method which can be applied for tailoring implant surface wettability.


Assuntos
Materiais Revestidos Biocompatíveis/química , Materiais Dentários/química , Oxigênio/química , Gases em Plasma/química , Titânio/química , Zircônio/química , Adesão Celular , Proliferação de Células , Materiais Revestidos Biocompatíveis/metabolismo , Materiais Dentários/metabolismo , Fibroblastos/citologia , Gengiva , Humanos , Osteoblastos/citologia , Gases em Plasma/metabolismo , Próteses e Implantes , Propriedades de Superfície , Molhabilidade
9.
Sci Rep ; 10(1): 12810, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732908

RESUMO

Current research on surface modifications has yielded advanced implant biomaterials. Various implant surface modifications have been shown to be promising in improving bone target cell response, but more comprehensive studies whether certain implant surface modifications can directly target cell behavioural features such as morphogenesis and proliferation are needed. Here, we studied the response of primary alveolar bone cells on various implant surface modifications in terms of osteoblast morphology and proliferation in vitro. Analyses of surface modifications led to surface-related test parameters including the topographical parameters micro-roughness, texture aspect and surface enlargement as well as the physicochemical parameter surface wettability. We compared osteoblast morphology and proliferation towards the above-mentioned parameters and found that texture aspect and surface enlargement but not surface roughness or wettability exhibited significant impact on osteoblast morphology and proliferation. Detailed analysis revealed osteoblast proliferation as a function of cell morphology, substantiated by an osteoblast size- and morphology-dependent increase in mitotic activity. These findings show that implant surface topography controls cell behavioural morphology and subsequently cell proliferation, thereby opening the road for cell instructive biomaterials.


Assuntos
Materiais Biocompatíveis , Proliferação de Células , Osteoblastos/citologia , Osteoblastos/fisiologia , Próteses e Implantes , Processo Alveolar/citologia , Tamanho Celular , Células Cultivadas , Humanos , Mitose/fisiologia , Propriedades de Superfície , Molhabilidade
10.
J Bone Miner Metab ; 37(1): 105-117, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29327303

RESUMO

In our previous study, we revealed significant differences of osteopontin (OPN) gene expression in primary human osteoblasts (HOBs) derived from iliac crest bone (iHOBs) and alveolar bone (aHOBs). The present study aims at assigning this discriminative expression to a possible biologic function. OPN is known to be involved in several pathologic and physiologic processes, among others angiogenesis. Therefore, we studied the reaction of human umbilical vein endothelial cells (HUVECs) to HOB-derived OPN regarding angiogenesis. To this end, human primary explant cultures of both bone entities from ten donors were established. Subsequent transcription analysis detected higher gene expression of OPN in iHOBs compared to aHOBs, thereby confirming the results of our previous study. This difference was particularly apparent when cultures were derived from female donors. Hence, OPN protein expression as well as the angiogenic potential of OPN was analyzed, originating from HOBs of one female donor. In accordance to the gene expression level, secreted OPN was more abundant in the supernatant of iHOBs than in aHOBs. Moreover, secreted OPN was found to stimulate migration of HUVECs, but not proliferation or tube formation. These results indicate an involvement in very early stages of angiogenesis and a functional distinction of OPN from HOBs derived from different bone entities.


Assuntos
Processo Alveolar/irrigação sanguínea , Processo Alveolar/metabolismo , Ílio/irrigação sanguínea , Ílio/metabolismo , Neovascularização Fisiológica , Osteoblastos/metabolismo , Osteopontina/metabolismo , Adulto , Animais , Movimento Celular , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Osteopontina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-29571656

RESUMO

OBJECTIVES: Because processed allogenic bone blocks contain remnants of cells and other organic material, the present study examined the putative presence of major histocompatibility complex (MHC) molecules in protein extracts derived from processed allogeneic bone blocks. STUDY DESIGN: Protein content and the immunogenic potential of 3 different processed allografts (Osteograft, DIZG, Berlin, Germany; Caput femoris, DIZG, Berlin, Germany; Human Spongiosa, Charité Tissue Bank, Berlin, Germany) were assessed by protein extraction and analysis of the presence of MHC class 1 and 2 molecules prior to grafting. MHC concentration was measured by using enzyme-linked immunosorbent assay. RESULTS: Protein content in the allograft materials varied between 0.87 and 1.61 µg protein/mg. In the allograft Human Spongiosa, no MHC was detected, whereas in the allogeneic bone blocks Osteograft and Caput femoris MHC 1 (0.04-0.037 ng/mg graft material) and in Osteograft MHC class 2 molecules were detectable. CONCLUSIONS: The results of the present study suggest that despite thorough processing, a potential antigenicity of allografts is not eliminated. MHC molecules in allografts may sensitize the immune system.

12.
Dent Mater ; 33(2): 241-255, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28087075

RESUMO

OBJECTIVE: To adequately address clinically important issues such as osseointegration and soft tissue integration, we screened for the direct biological cell response by culturing human osteoblasts and gingival fibroblasts on novel zirconia-based dental implant biomaterials and subjecting them to transcriptional analysis. METHODS: Biomaterials used for osteoblasts involved micro-roughened surfaces made of a new type of ceria-stabilized zirconia composite with two different topographies, zirconium dioxide, and yttria-stabilized zirconia (control). For fibroblasts smooth ceria- and yttria-stabilized zirconia surface were used. The expression of 90 issue-relevant genes was determined on mRNA transcription level by real-time PCR Array technology after growth periods of 1 and 7 days. RESULTS: Generally, modulation of gene transcription exhibited a dual dependence, first by time and second by the biomaterial, whereas biomaterial-triggered changes were predominantly caused by the biomaterials' chemistry rather than surface topography. Per se, modulated genes assigned to regenerative tissue processes such as fracture healing and wound healing and in detail included colony stimulating factors (CSF2 and CSF3), growth factors, which regulate bone matrix properties (e.g. BMP3 and TGFB1), osteogenic BMPs (BMP2/4/6/7) and transcription factors (RUNX2 and SP7), matrix collagens and osteocalcin, laminins as well as integrin ß1 and MMP-2. SIGNIFICANCE: With respect to the biomaterials under study, the screening showed that a new zirconia-based composite stabilized with ceria may be promising to provide clinically desired periodontal tissue integration. Moreover, by detecting biomarkers modulated in a time- and/or biomaterial-dependent manner, we identified candidate genes for the targeted analysis of cell-implant bioresponse during biomaterial research and development.


Assuntos
Implantes Dentários , Expressão Gênica/efeitos dos fármacos , Osteoblastos/metabolismo , Zircônio , Materiais Dentários , Fibroblastos , Gengiva/citologia , Humanos , Propriedades de Superfície , Titânio
13.
Biomaterials ; 35(10): 3208-19, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24439401

RESUMO

As information on osteoblast mechanosensitivity response to biomechanical cues in three-dimensional (3D) in vitro microenvironments is sparse, the present study compared morphogenesis of primary human alveolar bone osteoblasts (PHABO) under microchip-based 3D-static conditions, and 3D-fluid flow-mediated biomechanical stimulation in perfusion bioreactors. Discrimination of the respective microenvironment by differential morphogenesis was evident from fluid flow-induced PHABO reorganization into rotund bony microtissue, comprising more densely packed multicellular 3D-aggregates, while viability of microtissues was flow rate dependent. Time-lapse microscopy and simple modeling of biomechanical conditions revealed that physiologically relevant fluid flow-mediated PHABO stimulation was associated with formation of mulberry-like PHABO aggregates within the first 24 h. Differential extracellular matrix deposition patterns and gene expression modulation in PHABO aggregates at day 7 further indicates progressive osteoblast differentiation exclusively in perfusion culture-developed bony microtissues. The results of our study strongly suggest PHABO morphogenesis as discriminator of microenvironmental growth conditions, which in case of the microfluidic 3D microchip-bioreactor are substantiated by triggering in vitro bone microtissue formation concomitant with progressive osteoblastic differentiation. Such microtissue outcomes provide unique insight for mechanobiological studies in response to biomechanical fluid flow cues, and clinically appear promising for in vitro PHABO preconditioning, enabling innovative bone augmentation procedures.


Assuntos
Microfluídica , Osteoblastos/citologia , Reatores Biológicos , Células Cultivadas , Microambiente Celular , Expressão Gênica , Humanos , Microscopia Eletrônica de Varredura , Morfogênese , Osteoblastos/metabolismo
14.
Dent Mater ; 29(7): 763-76, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23669198

RESUMO

OBJECTIVE: This study examined the in vitro and in vivo response of osteoblasts to a novel, acid-etched and sandblasted zirconia surface. METHODS: Osteoblastic hFOB 1.19 cells were cultured either on electrochemically anodized titanium (TiUnite(®)), machined titanium (Ti-m), sandblasted and acid-etched zirconia (TZP-proc), and machined zirconia (TZP-A-m). The surface topography of the various substrates was analyzed by 3D laserscan measurements and scanning electron microscopy. At culture days 1, 3, 7, 14, 21, and 28, cell proliferation was determined. Gene expression was analyzed using RT-PCR. Histologic analysis and biomechanical testing was performed on miniature implants placed in the rat femur. RESULTS: During the first 7 days, a retarded cell proliferation was observed on the TiUnite(®) surface. After 28 days of cultivation, cell proliferation reached similar levels on all surfaces. An up-regulation of bone and extracellular matrix specific genes could be seen for TZP-proc at day 21. The mean bone-implant contact rate after a healing period of 14 and 28 days, respectively, was higher for TiUnite(®) than for TZP-proc. At 28 day, the biomechanical test showed significantly higher values for TiUnite(®) than for all other surfaces. SIGNIFICANCE: The novel, rough zirconia surface was accepted by hFOB 1.19 cells and integrates into rat bone tissue. However, osseointegration seemed to proceed more slowly and to a lesser extent compared to a moderately roughened titanium surface.


Assuntos
Implantes Dentários , Osseointegração , Osteoblastos , Titânio , Ativação Transcricional , Ítrio , Zircônio , Análise de Variância , Animais , Osso e Ossos , Proliferação de Células , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Fêmur , Regulação da Expressão Gênica , Humanos , Implantes Experimentais , Masculino , Teste de Materiais , Microscopia Confocal , Osseointegração/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas , Propriedades de Superfície , Titânio/farmacologia , Ítrio/farmacologia , Zircônio/farmacologia
15.
Tissue Eng Part C Methods ; 19(11): 850-63, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23581275

RESUMO

Though recent studies report decisive positive effects on cells, elicited by ultraviolet (UV)-induced bioactivation of biomaterial implant surfaces, they frequently employ cells other than of human origin or cells not representing oral implant targets. Therefore, the present study aims at exploring distinct cell functions of primary human alveolar bone osteoblasts (PHABO) in response to bioactivated microstructured titanium and zirconia implant surfaces with matched controls. UV-treatment significantly reduced surface carbon, while concomitantly increasing wettability. In case of titanium or zirconia biomaterial source of equal roughness, bioactivation did not significantly improve cell functions, including initial cell attachment, morphogenesis, proliferation, and gene expression of osteogenic biomarkers osteocalcin, alkaline phosphatase and collagen type I. However, cell functions discriminated surface roughness by either comparing titanium and zirconia or interindividual zirconia surfaces. While rough surfaces primarily favored primary adhesion, proliferation appeared improved on smooth surfaces, and gene expression seemed to be stronger modulated on the smoothest biomaterial. Our results show for the first time that bioactivation appears to be not the main causative for the observed modulation of the distinct cell functions analyzed in PHABO, but add to the body of evidence that they were more governed by surface architecture rather than by bioactivation.


Assuntos
Implantes Dentários , Osteoblastos/citologia , Titânio/farmacologia , Titânio/efeitos da radiação , Raios Ultravioleta , Zircônio/farmacologia , Zircônio/efeitos da radiação , Adulto , Materiais Biocompatíveis/farmacologia , Biomarcadores/metabolismo , Carbono/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , DNA/metabolismo , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imageamento Tridimensional , Masculino , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Espectroscopia Fotoeletrônica , Propriedades de Superfície
16.
Z Med Phys ; 23(2): 102-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23410914

RESUMO

We describe the characterization of a chip-based platform (3(D)-KITChip) for the three-dimensional cultivation of cells under perfusion conditions via magnetic resonance imaging (MRI). Besides the chip, the microfluidic system is comprised of a bioreactor housing, a medium supply, a pump for generating active flow conditions as well as a gas mixing station. The closed circulation loop is ideally suited for a characterization via MRI since the small bioreactor setup with active perfusion, driven by the pump from outside the coils, not only is completely MRI-compatible but also can be transferred into the magnetic coil of an experimental animal scanner. We have found that the two halves of the chip inside the bioreactor are homogeneously perfused with cell culture medium both with and without cells inside the 3(D)-KITChip. In addition, the homogeneity of perfusion is nearly independent from the flow rates investigated in this study, and furthermore, the setup shows excellent washout characteristics after spiking with Gadolinium-DOTA which makes it an ideal candidate for drug screening purposes. We, therefore, conclude that the 3(D)-KITChip is well suited as a platform for high-density three-dimensional cell cultures, especially those requiring a defined medium flow and/or gas supply in a precisely controllable three dimensional environment, like stem cells.


Assuntos
Bioensaio/instrumentação , Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Rastreamento de Células/instrumentação , Análise de Injeção de Fluxo/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
17.
Biomed Microdevices ; 14(2): 291-301, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22069080

RESUMO

Since three-dimensional (3D) cell culture models better reflect tissues in vivo in terms of cell shape and microenvironment compared to conventional monolayer cultures, 3D tissue culture substrates gain more importance for a wide range of biological applications like drug discovery, toxicological studies, cancer and stem cell research. In this study we developed a method for the fabrication of 3D cell culture substrates in a multiwell plate format by microstructuring the bottom of 96-well cell culture plates using an ultrasonic embossing process. The resulting microstructured area consists of cubic microcavities in which adherent multicellular aggregates can be formed. We performed the biological evaluation of the system with the liver-derived human cell-line HepG2 and compared the novel substrate with a commercially available 3D culture system comprising porous alginate sponges. Metabolic activity (alamarBlue® reduction) and induction of four biotransformation enzymes (EROD, ECOD, UGT, SULT) were determined by fluorimetry or HPLC. Our results revealed that HepG2 cells in microstructured plates showed a higher mitochondrial activity, as well as enzyme activity of ECOD and UGT after treatment with an inducer when compared to cells cultured in alginate sponges at otherwise comparable conditions. Since we have modified standard cell culture plates, the obtained system is adaptable to automated screening and might be useful for all kinds of cultures including adult, progenitor and stem cells which need a 3D culture configuration to restore or maintain the differentiated status.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Ultrassom/métodos , O-Dealquilase 7-Alcoxicumarina/análise , O-Dealquilase 7-Alcoxicumarina/metabolismo , Alginatos/química , Biotransformação , Adesão Celular , Forma Celular , Citocromo P-450 CYP1A1/análise , Citocromo P-450 CYP1A1/metabolismo , Desenho de Equipamento , Ácido Glucurônico/química , Células Hep G2 , Hepatócitos/ultraestrutura , Ácidos Hexurônicos/química , Humanos , Microscopia Confocal , Sulfotransferases/análise , Sulfotransferases/metabolismo
18.
Biomaterials ; 32(34): 8947-56, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21868090

RESUMO

Due to the architecture of solid body tissues including bone, three-dimensional (3D) in vitro microenvironments appear favorable, since herein cell growth proceeds under more physiological conditions compared to conventional 2D systems. In the present study we show that a 3D microenvironment comprising a fibronectin-coated PMMA/PC-based micro-chip promotes differentiation of primary human osteoblasts as reflected by the densely-packed 3D bone cell aggregates and expression of biomarkers indicating osteoblast differentiation. Morphogenesis and fluorescence dye-based live/dead staining revealed homogenous cell coverage of the microcavities of the chip array, whereat cells showed high viability up to 14 days. Moreover, Azur II staining proved formation of uniform sized multilayered aggregates, exhibiting progressive intracellular deposition of extracellular bone matrix constituents comprising fibronectin, osteocalcin and osteonectin from day 7 on. Compared to 2D monolayers, osteoblasts grown in the 3D chip environment displayed differential mostly higher gene expression for osteocalcin, osteonectin, and alkaline phosphatase, while collagen type I remained fairly constant in both culture environments. Our results indicate that the 3D microenvironment, based on the PMMA biomaterial chip array promotes osteoblast differentiation, and hereby renders a promising tool for tissue-specific in vitro preconditioning of osteoblasts designated for clinically-oriented bone augmentation or regeneration.


Assuntos
Materiais Revestidos Biocompatíveis/metabolismo , Fibronectinas/metabolismo , Osteoblastos/citologia , Cimento de Policarboxilato/metabolismo , Polimetil Metacrilato/metabolismo , Análise Serial de Tecidos/instrumentação , Engenharia Tecidual/instrumentação , Adulto , Idoso , Sobrevivência Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Feminino , Fibronectinas/química , Expressão Gênica , Humanos , Masculino , Microtecnologia , Osteoblastos/metabolismo , Cimento de Policarboxilato/química , Polimetil Metacrilato/química , Alicerces Teciduais/química
19.
World J Stem Cells ; 1(1): 43-8, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21607106

RESUMO

One of the greatest impacts on in vitro cell biology was the introduction of three-dimensional (3D) culture systems more than six decades ago and this era may be called the dawn of 3D-tissue culture. Although the advantages were obvious, this field of research was a "sleeping beauty" until the 1970s when multicellular spheroids were discovered as ideal tumor models. With this rebirth, organotypical culture systems became valuable tools and this trend continues to increase. While in the beginning, simple approaches, such as aggregation culture techniques, were favored due to their simplicity and convenience, now more sophisticated systems are used and are still being developed. One of the boosts in the development of new culture techniques arises from elaborate manufacturing and surface modification techniques, especially micro and nano system technologies that have either improved dramatically or have evolved very recently. With the help of these tools, it will soon be possible to generate even more sophisticated and more organotypic-like culture systems. Since 3D perfused or superfused systems are much more complex to set up and maintain compared to use of petri dishes and culture flasks, the added value of 3D approaches still needs to be demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...