Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 89(6): e202300763, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358342

RESUMO

The electrochemical synthesis of α ${\alpha }$ -amino acids at room temperature and pressure is a sustainable alternative to conventional methods like microbial fermentation and Strecker synthesis. A custom-built zero-gap flow electrolyzer was used to study the electrosynthesis of alanine via the electrocatalytic reductive amination (ERA) of the corresponding biomass-derivable α ${\alpha }$ -keto acid precursor - pyruvic acid (PA), and hydroxylamine (NH2OH) at very low pH. Non-toxic, abundant, and easy to prepare TiO2/Ti electrocatalysts were utilized as the cathode. Three TiO2/Ti felt electrodes with different oxide thicknesses were prepared and their characterization results were correlated with their respective electrochemical performance in terms of Faradaic efficiency η ${\eta }$ , and partial current density j ‾ ${\left|\overline{j}\right|}$ . Cyclic voltammetry indicated a different electrocatalytic reduction process on hydrothermally treated electrodes, compared to thermally oxidized ones. Hydrothermally treated electrodes were also found to have the thickest porous anatase layer and achieved 50-75 % alanine conversion efficiencies. Optimization showed that the cell potential, reactant flow rate and the PA: NH2OH ratio were crucial parameters in determining the conversion efficiency. η ${\eta }$ and j ‾ ${\left|\overline{j}\right|}$ were found to significantly decrease when an excess of is used and, an optimal alanine η ${\eta }$ of 75 % was achieved at 2.0 V applied cell potential and 10 mL/h reactant flow rate.

2.
J Am Chem Soc ; 145(48): 26122-26132, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37984877

RESUMO

Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO2 nanoparticles in an aqueous Ni2+ solution. UV illumination creates in situ a Ni+/TiO2/Ti3+ photocatalyst that self-activates and, over time, produces H2 at a higher rate. In situ X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy show that key to self-assembly and self-activation is the light-induced formation of defects in the semiconductor, which enables the formation of monovalent nickel (Ni+) surface states. Metallic nickel states, i.e., Ni0, do not form under the dark (resting state) or under illumination (active state). Once the catalyst is assembled, the Ni+ surface states act as electron relay for electron transfer to form H2 from water, in the absence of sacrificial species or noble metal cocatalysts.

3.
Nanoscale ; 13(12): 6087-6095, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33666210

RESUMO

Aluminum ion aqueous batteries (AIBs) are among the most promising candidates for high energy density devices due to the multivalent redox processes associated with Al3+ ion intercalation. However, only a few stable AIB electrode materials have been reported so far. MoO3 is a very promising electrode material due to its octahedral layered crystal structure which can accommodate multivalent cation by intercalation. However, the poor electrochemical stability of MoO3 and the sluggish intercalation kinetics of Al3+ ion in Mo oxides electrodes limit its practical application. In this work, we propose a strategy to overcome such shortcomings of MoO3 by fabricating electrodes composed of self-ordered one-dimensional (1D) MoTaOx nanotubes synthesized via electrochemical anodization of Mo-Ta alloy substrates. We show that this approach allows for direct incorporation of Ta in the Mo oxide nanotubes. The resulting MoTaOx nanotubes, composed of octahedral MoO3 and rhombohedral Mo2Ta2O11 phases, exhibit remarkable electrochemical stability and Al-ion storage properties in aqueous electrolytes that are superior to that of pristine Mo oxide or other most efficient electrode materials reported to date. Such MoTaOx nanotube-based electrodes can achieve a specific capacity of 1180 mA h cm-3 (337 mA h g-1, 141 µA h cm-2) at 1.25 A cm-3 (∼0.35 A g-1, 0.15 mA cm-2). More importantly, the capacity retention of such nanotube array electrodes remains above 83% of the initial capacity after 3000 cycles.

4.
ACS Appl Mater Interfaces ; 12(34): 38211-38221, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32706239

RESUMO

We investigate the co-catalytic activity of PtCu alloy nanoparticles for photocatalytic H2 evolution from methanol-water solutions. To produce the photocatalysts, a few-nanometer-thick Pt-Cu bilayers are deposited on anodic TiO2 nanocavity arrays and converted by solid-state dewetting via a suitable thermal treatment into bimetallic PtCu nanoparticles. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results prove the formation of PtCu nanoalloys that carry a shell of surface oxides. X-ray absorption near-edge structure (XANES) data support Pt and Cu alloying and indicate the presence of lattice disorder in the PtCu nanoparticles. The PtCu co-catalyst on TiO2 shows a synergistic activity enhancement and a significantly higher activity toward photocatalytic H2 evolution than Pt- or Cu-TiO2. We propose the enhanced activity to be due to Pt-Cu electronic interactions, where Cu increases the electron density on Pt, favoring a more efficient electron transfer for H2 evolution. In addition, Cu can further promote the photoactivity by providing additional surface catalytic sites for hydrogen recombination. Remarkably, when increasing the methanol concentration up to 50 vol % in the reaction phase, we observe for PtCu-TiO2 a steeper activity increase compared to Pt-TiO2. A further increase in methanol concentration (up to 80 vol %) causes for Pt-TiO2 a clear activity decay, while PtCu-TiO2 still maintains a high level of activity. This suggests improved robustness of PtCu nanoalloys against poisoning from methanol oxidation products such as CO.

5.
Chem Asian J ; 15(2): 301-309, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31793241

RESUMO

Pt nanoparticles are typically decorated as co-catalyst on semiconductors to enhance the photocatalytic performance. Due to the low abundance and high cost of Pt, reaching a high activity with minimized co-catalyst loadings is a key challenge in the field. We explore a dewetting-dealloying strategy to fabricate on TiO2 nanotubes nanoporous Pt nanoparticles, aiming at improving the co-catalyst mass activity for H2 generation. For this, we sputter first Pt-Ni bi-layers of controllable thickness (nm range) on highly ordered TiO2 nanotube arrays, and then induce dewetting-alloying of the Pt-Ni bi-layers by a suitable annealing step in a reducing atmosphere: the thermal treatment causes the Pt and Ni films to agglomerate and at the same time mix with each other, forming on the TiO2 nanotube surface metal islands of a mixed PtNi composition. In a subsequent step we perform chemical dealloying of Ni that is selectively etched out from the bimetallic dewetted islands, leaving behind nanoporous Pt decorations. Under optimized conditions, the nanoporous Pt-decorated TiO2 structures show a>6 times higher photocatalytic H2 generation activity compared to structures modified with a comparable loading of dewetted, non-porous Pt. We ascribe this beneficial effect to the nanoporous nature of the dealloyed Pt co-catalyst, which provides an increased surface-to-volume ratio and thus a more efficient electron transfer and a higher density of active sites at the co-catalyst surface for H2 evolution.

6.
ACS Catal ; 9(1): 345-364, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30701123

RESUMO

Black TiO2 nanomaterials have recently emerged as promising candidates for solar-driven photocatalytic hydrogen production. Despite the great efforts to synthesize highly reduced TiO2, it is apparent that intermediate degree of reduction (namely, gray titania) brings about the formation of peculiar defective catalytic sites enabling cocatalyst-free hydrogen generation. A precise understanding of the structural and electronic nature of these catalytically active sites is still elusive, as well as the fundamental structure-activity relationships that govern formation of crystal defects, increased light absorption, charge separation, and photocatalytic activity. In this Review, we discuss the basic concepts that underlie an effective design of reduced TiO2 photocatalysts for hydrogen production such as (i) defects formation in reduced TiO2, (ii) analysis of structure deformation and presence of unpaired electrons through electron paramagnetic resonance spectroscopy, (iii) insights from surface science on electronic singularities due to defects, and (iv) the key differences between black and gray titania, that is, photocatalysts that require Pt-modification and cocatalyst-free photocatalytic hydrogen generation. Finally, future directions to improve the performance of reduced TiO2 photocatalysts are outlined.

7.
Photochem Photobiol Sci ; 18(5): 1046-1055, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30534751

RESUMO

Gold-decorated TiO2 nanotubes were used for the photocatalytic abatement of Hg(ii) in aqueous solutions. The presence of dewetted Au nanoparticles induces a strong enhancement of photocatalytic reduction and scavenging performances, with respect to naked TiO2. In the presence of chlorides, a massive formation of Hg2Cl2 nanowires, produced from Au nanoparticles, was observed using highly Au loaded photocatalysts to treat a 10 ppm Hg(ii) solution. EDS and XPS confirmed the nature of the photo-produced nanowires. In the absence of chlorides and/or at lower Hg(ii) starting concentrations, the scavenging of mercury proceeds through the formation of Hg-Au amalgams. Solar light driven Hg(ii) abatements up to 90% were observed after 24 h. ICP-MS analysis revealed that the removed Hg(ii) is accumulated on the photocatalyst surface. Regeneration of Hg-loaded exhaust photocatalysts was easily performed by anodic stripping of Hg(0) and Hg(i) to Hg(ii). After four catalytic-regeneration cycles, only a 10% decrease of activity was observed.

8.
Chem Asian J ; 12(3): 314-323, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27897369

RESUMO

Self-standing TiO2 nanotube layers in the form of membranes are fabricated by self-organizing anodization of Ti metal and a potential shock technique. The membranes are then decorated by sputtering different Pt amounts i) only at the top, ii) only at the bottom or iii) at both top and bottom of the tube layers. The Pt-decorated membranes are transferred either in tube top-up or in tube top-down configuration onto FTO slides and are investigated, after crystallization, as photocatalysts for H2 generation using either front or back-side light irradiation. Double-side Pt-decoration of the tube membranes leads to higher H2 generation rates (independently of tube and light-irradiation configuration) compared to membranes decorated at only one side with similar overall Pt amounts. The results suggest that this effect cannot be only ascribed to the overall amount of Pt co-catalyst as such but also to its distribution at both tube extremities. This leads to optimized light absorption and electron diffusion/transfer dynamics: the central part of the membranes acts as light-harvesting zone and electrons therein generated can diffuse towards the Pt/TiO2 active zones (tube extremities) where they can react with the environment and generate H2 .

9.
J Nanosci Nanotechnol ; 16(5): 5353-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483930

RESUMO

TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.


Assuntos
Benzaldeídos/síntese química , Indóis/química , Nanotubos/química , Nanotubos/efeitos da radiação , Polímeros/química , Titânio/química , Absorção Fisico-Química , Benzaldeídos/efeitos da radiação , Álcool Benzílico , Catálise/efeitos da radiação , Indóis/efeitos da radiação , Luz , Teste de Materiais , Nanotubos/ultraestrutura , Oxirredução/efeitos da radiação , Polímeros/efeitos da radiação , Doses de Radiação , Titânio/efeitos da radiação
11.
Chem Asian J ; 11(5): 789-97, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26756168

RESUMO

In the present work we investigate various optical properties (such as light absorption and reflectance) of anodic TiO2 nanotube layers directly transferred as self-standing membranes onto quartz substrates. This allows investigation in a transmission geometry which provides significantly more reliable data than measurements on the metallic Ti substrate. Light transmission and reflectance measurements were carried out for layers of thickness varying from 1.8 to 50 µm, and the layers were investigated in their amorphous and crystalline forms. A series of wavelength-dependent light attenuation coefficients are extrapolated and found to match the photocurrent versus irradiation wavelength behavior. A feature specific to anodic nanotubes is that their intrinsic carbon contamination content causes a proportional sub-bandgap response. Overall, the extracted data provide a valuable basis and understanding for the design of photo-electrochemical devices based on TiO2 nanotubes.

12.
Chem Sci ; 7(12): 6865-6886, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28567258

RESUMO

Formation and dispersion of metal nanoparticles on oxide surfaces in site-specific or even arrayed configuration are key in various technological processes such as catalysis, photonics, electrochemistry and for fabricating electrodes, sensors, memory devices, and magnetic, optical, and plasmonic platforms. A crucial aspect towards an efficient performance of many of these metal/metal oxide arrangements is a reliable fabrication approach. Since the early works on graphoepitaxy in the 70s, solid state dewetting of metal films on patterned surfaces has been much explored and regarded as a most effective tool to form defined arrays of ordered metal particles on a desired substrate. While templated dewetting has been studied in detail, particularly from a mechanistic perspective on lithographically patterned Si surfaces, the resulting outstanding potential of its applications on metal oxide semiconductors, such as titania, has received only limited attention. In this perspective we illustrate how dewetting and particularly templated dewetting can be used to fabricate highly efficient metal/TiO2 photocatalyst assemblies e.g. for green hydrogen evolution. A remarkable advantage is that the synthesis of such photocatalysts is completely based on self-ordering principles: anodic self-organized TiO2 nanotube arrays that self-align to a highest degree of hexagonal ordering are an ideal topographical substrate for a second self-ordering process, that is, templated-dewetting of sputter-deposited metal thin films. The controllable metal/semiconductor coupling delivers intriguing features and functionalities. We review concepts inherent to dewetting and particularly templated dewetting, and outline a series of effective tools that can be synergistically interlaced to reach fine control with nanoscopic precision over the resulting metal/TiO2 structures (in terms of e.g. high ordering, size distribution, site specific placement, alloy formation) to maximize their photocatalytic efficiency. These processes are easy to scale up and have a high throughput and great potential to be applied to fabricate not only (photo)catalytic materials but also a large palette of other functional nanostructured elements and devices.

13.
J Am Chem Soc ; 137(17): 5646-9, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25884483

RESUMO

We introduce the use of pure molten ortho-phosphoric acid (o-H3PO4) as an electrolyte for self-organizing electrochemistry. This electrolyte allows for the formation of self-organized oxide architectures (one-dimensional nanotubes, nanochannels, nanopores) on metals such as tungsten that up to now were regarded as very difficult to grow self-ordered anodic oxide structures. In this work, we show particularly the fabrication of thick, vertically aligned tungsten oxide nanochannel layers, with pore diameter of ca. 10 nm and illustrate their potential use in some typical applications.

14.
Adv Mater ; 27(20): 3208-15, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25872758

RESUMO

Anodic self-organized TiO2 nanostumps are formed and exploited for self-ordering dewetting of Au-Ag sputtered films. This forms ordered particle configurations at the tube top (crown position) or bottom (ground position). By dealloying from a minimal amount of noble metal, porous Au nanoparticles are then formed, which, when in the crown position, allow for a drastically improved photocatalytic H2 production compared with nanoparticles produced by conventional dewetting processes.

15.
Phys Chem Chem Phys ; 17(7): 4864-9, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25607570

RESUMO

Cathodoluminescence spectroscopy is profitably exploited to study energy transfer mechanisms in Au and Pt/black TiO2 heterostructures. While Pt nanoparticles absorb light in the UV region, Au nanoparticles absorb light by surface plasmon resonance and interband transitions, both of them occurring in the visible region. The intra-bandgap states (oxygen vacancies) of black TiO2 play a key role in promoting both hot electron transfer and plasmonic resonant energy transfer from Au nanoparticles to the TiO2 semiconductor with a consequent photocatalytic H2 production increase. An innovative criterion is introduced for the design of plasmonic composites with increased efficiency under visible light.

16.
Chem Commun (Camb) ; 50(68): 9653-6, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25019463

RESUMO

In the present work we introduce a technique to form a photocatalyst based on Pt nanoparticles suspended over the mouth of anodic TiO2 nanotubes. These structures are obtained by decorating the top end of highly ordered TiO2 nanotubes with a web of TiO2 nanofibrils, followed by sputter deposition of a minimum amount of Pt. A subsequent thermal dewetting step forms 3-6 nm-sized Pt nanoparticles along the nanofibrils. These structures, when compared to conventional Pt decoration techniques of TiO2 nanotubes, show strongly enhanced photocatalytic H2 evolution efficiency.

17.
Adv Mater ; 25(42): 6133-7, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23963835

RESUMO

Electrochemical anodization of low-concentration (0.02-0.2 at% Au) TiAu alloys in a fluoride electrolyte leads to self-organized TiO2 nanotubes that show a controllable, regular in situ decoration with elemental Au nanoclusters of ≈5 nm in diameter. The degree of self-decoration can be adjusted by the Au concentration in the alloy and the anodization time. Such Au particle decorated tubes show a high activity for photocatalytic H2 production from ethanol solutions.


Assuntos
Ouro/química , Hidrogênio/química , Nanotubos/química , Titânio/química , Ligas/química , Catálise , Etanol/química , Fluoretos/química , Raios Ultravioleta
18.
Angew Chem Int Ed Engl ; 52(29): 7514-7, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23765440

RESUMO

Peas in a pod: A highly aligned Au(np)@TiO2 photocatalyst was formed by self-organizing anodization of a Ti substrate followed by dewetting of a gold thin film. This leads to exactly one Au nanoparticle (np) per TiO2 nanocavity. Such arrays are highly efficient photocatalysts for hydrogen generation from ethanol.

19.
Chemistry ; 19(19): 5841-4, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23519978

RESUMO

A little dopey: Ta-doped titania (TiO2) nanotube (NT) arrays can be grown by electrochemical anodization onto low-Ta-concentration (0.03-0.4 at % Ta) Ti-Ta alloys. Under optimized conditions (0.1 at % Ta, annealing at 650 °C and 7 µm thickness), Ta-doped TiO2 NT arrays show a significantly enhanced activity in photoelectrochemical water splitting under simulated sunlight conditions (see figure).

20.
Photochem Photobiol Sci ; 12(4): 595-601, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22930393

RESUMO

The effect of noble metal (Pt and Au) nanoparticle photodeposition on a series of NH4F-doped TiO2 photocatalysts calcined at 700 °C was investigated both in a thermodynamically down-hill reaction, i.e. the degradation of formic acid in aqueous suspension, and in an up-hill reaction, i.e. hydrogen production from methanol-water vapour mixtures. All photocatalysts were characterized by BET, XRD, UV-vis absorption and HRTEM analysis. Intriguing synergistic effects of simultaneous bulk and surface TiO2 modification were evidenced in both photocatalytic reactions, which can be interpreted in relation to the structural features of the materials. On one hand NH4F doping guarantees that the most active TiO2 anatase phase is stabilised up to high calcination temperature, ensuring high crystallinity and good photoinduced charge carriers production, on the other hand noble metal nanoparticles contribute in increasing the separation of photoproduced charge carriers, resulting in enhanced photocatalytic performances of the surface- and bulk-modified photocatalyst systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...