Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 2942023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504702

RESUMO

This study presents the development and evaluation of a high flow rate gelatin cascade impactor (GCI) to collect different PM particle sizes on water-soluble gelatin substrates. The GCI operates at a flow rate of 100 lpm, and consists of two impaction stages, followed by a filter holder to separate particles in the following diameter ranges: >2.5 µm, 0.2-2.5 µm, and <0.2 µm. Laboratory characterization of the GCI performance was conducted using monodisperse polystyrene latex (PSL) particles as well as polydisperse ammonium sulfate, sodium chloride, and ammonium nitrate aerosols to obtain the particle collection efficiency curves for both impaction stages. In addition to the laboratory characterization, we performed concurrent field experiments to collect PM2.5 employing both GCI equipped with gelatin filter and personal cascade impactor sampler (PCIS) equipped with PTFE filter for further toxicological analysis using macrophage-based reactive oxygen species (ROS) and dithiothreitol consumption (DTT) assays. Our results showed that the experimentally determined cut-point diameters for the first and second impaction stages were 2.4 µm and 0.21 µm, respectively, which agreed with the theoretical predictions. Although the GCI has been developed primarily to collect particles on gelatin filters, the use of a different type of substrate (i.e., quartz) led to similar particle separation characteristics. The findings of the field tests demonstrated the advantage of using the GCI in toxicological studies due to its ability to collect considerable PM-toxic constituents, as corroborated by the DTT and ROS values for the GCI-collected particles which were 26.44 nmoles/min/mg PM and 8813.2 µg Zymosan Units/mg PM, respectively. These redox activity values were more than twice those of particles collected concurrently on PTFE filter using the PCIS. This high-flow-rate impactor can collect considerable amounts of size-fractionated PM on water-soluble filters (i.e., gelatin), which can completely dissolve in water allowing for the extraction of soluble and insoluble PM species for further toxicological analysis.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36361438

RESUMO

In this study we investigated the effectiveness of air purifiers and in-line filters in ventilation systems working simultaneously inside various classrooms at the University of Southern California (USC) main campus. We conducted real-time measurements of particle mass (PM), particle number (PN), and carbon dioxide (CO2) concentrations in nine classrooms from September 2021 to January 2022. The measurement campaign was carried out with different configurations of the purifier (i.e., different flow rates) while the ventilation system was continuously working. Our results showed that the ventilation systems in the classrooms were adequate in providing sufficient outdoor air to dilute indoor CO2 concentrations due to the high air exchange rates (2.63-8.63 h-1). The particle penetration coefficients (P) of the investigated classrooms were very low for PM (<0.2) and PN (<0.1), with the exception of one classroom, corroborating the effectiveness of in-line filters in the ventilation systems. Additionally, the results showed that the efficiency of the air purifier exceeded 95% in capturing ultrafine and coarse particles and ranged between 82-88% for particles in the accumulation range (0.3-2 µm). The findings of this study underline the effectiveness of air purifiers and ventilation systems equipped with efficient in-line filters in substantially reducing indoor air pollution.


Assuntos
Filtros de Ar , Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Universidades , Dióxido de Carbono , Ventilação , Poluentes Atmosféricos/análise , Material Particulado/análise , Instituições Acadêmicas , Monitoramento Ambiental
3.
Environ Sci Atmos ; 2(5): 1076-1086, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36277745

RESUMO

In this study, we investigated the impact of urban emission sources on the chemical composition of ambient particulate matter (PM) as well as the associated oxidative potential. We collected six sets of PM samples in five urban location sites around the world over long time periods varying from weeks to months, intentionally selected for their PM to be dominated by unique emission sources: (1) PM2.5 produced mainly by traffic emissions in central Los Angeles, United States (US); (2) PM2.5 dominated by biomass burning in Milan, Italy; (3) PM2.5 formed by secondary photochemical reactions thus dominated by secondary aerosols in Athens, Greece; (4) PM10 emitted by refinery and dust resuspension in Riyadh, Saudi Arabia (SA); (5) PM10 generated by dust storms in Riyadh, SA, and (6) PM2.5 produced mainly by industrial and traffic emissions in Beirut, Lebanon. The PM samples were chemically analyzed and their oxidative potential were quantified by employing the dithiothreitol (DTT) assay. Our results revealed that the Milan samples were rich in water soluble organic carbon (WSOC) and PAHs, even exceeding the levels measured on Los Angeles (LA) freeways. The PM in Athens was characterized by high concentrations of inorganic ions, specifically sulfate which was the highest of all PM samples. The ambient PM in LA was impacted by the traffic-emitted primary organic and elemental carbon. Furthermore, the contribution of metals and elements per mass of PM in Riyadh and Beirut samples were more pronounced relative to other sampling areas. The highest intrinsic PM redox activity was observed for PM with the highest WSOC fraction, including Milan (biomass burning) and Athens (secondary organic aerosols, SOA). PM in areas characterized by high metal emissions including dust events, refinery and industry, such as Riyadh and Beirut, had the lowest oxidative potential as assessed by the DTT assay. The results of this study illustrate the impact of major emission sources in urban areas on the redox activity and oxidative potential of ambient PM, providing useful information for developing efficient air pollution control and mitigation policies in polluted areas around the globe.

5.
Environ Sci Technol ; 56(11): 7029-7039, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35230811

RESUMO

In this study, the emission factors of PM10 and its chemical constituents from various contributing sources including nontailpipe and tailpipe emissions were estimated on two interstate freeways in the Los Angeles basin. PM10 samples were collected on the I-110 and I-710 freeways as well as at the University of Southern California (USC) campus as the urban background site, while freeway and urban background CO2 levels were measured simultaneously. PM10 samples were analyzed for their content of chemical species which were used to estimate the emission factors of PM10 and its constituents on both I-110 and I-710 freeways. The estimated values were employed to determine the emission factors for light (LDV) and heavy-duty vehicles (HDV). The quantified species were also processed by the positive matrix factorization (PMF) model to produce PM10 freeway source profiles and their contribution to PM10 mass concentrations. Using the PMF factor profiles and emission factors on the two freeways, we characterized the emission factors for light-duty and heavy-duty vehicles by each nontailpipe source. Our findings indicated higher nontailpipe emission factors of PM10 and metal elements on the I-710 freeway compared to the I-110 freeway, due to the higher fraction of heavy-duty vehicles (HDVs) on that freeway. Furthermore, the generation of nontailpipe PM10 from resuspension of road dust was twice of tire and brake wear. The results of this study provide significant insights into PM10 freeway emissions and particularly the overall contribution of nontailpipe and tailpipe sources in Los Angeles, which can be helpful to modelers and air quality officials in assessing the importance of individual traffic-related emissions on the overall population exposure.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Los Angeles , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
6.
Sci Total Environ ; 806(Pt 2): 150590, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597581

RESUMO

In this study, we employed Principal Component Analysis (PCA) and Multi-Linear Regression (MLR) to identify the most significant sources contributing to the toxicity of PM10 in the city center of Riyadh. PM10 samples were collected using a medium-volume air sampler during cool (December 2019-March 2020) and warm (May 2020-August 2020) seasons, including dust and non-dust events. The collected filters were analyzed for their chemical components (i.e., water-soluble ions, metals, and trace elements) as well as oxidative potential and elemental and organic carbon (EC/OC) contents. Our measurements revealed comparable extrinsic oxidative potential (P-value = 0.30) during the warm (1.2 ± 0.1 nmol/min-m3) and cool (1.1 ± 0.1 nmol/min-m3) periods. Moreover, we observed higher extrinsic oxidative potential of PM10 samples collected during dust events (~30% increase) compared to non-dust samples. Our PCA-MLR analysis identified soil and resuspended dust, secondary aerosol (SA), local industrial activities and petroleum refineries, and traffic emissions as the four sources contributing to the ambient PM10 oxidative potential in central Riyadh. Soil and resuspended dust were the major source contributing to the oxidative potential of ambient PM10, accounting for 31% of the total oxidative potential. Secondary aerosols (SA) were the next important source of PM10 toxicity in the area as they contributed to about 20% of the PM10 oxidative potential. Results of this study revealed the major role of soil and resuspended road dust on PM10 toxicity and can be helpful in adopting targeted air quality policies to reduce the population exposure to PM10.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Estresse Oxidativo , Tamanho da Partícula , Material Particulado/análise , Arábia Saudita , Estações do Ano , Emissões de Veículos/análise
8.
J Air Waste Manag Assoc ; 71(2): 191-208, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32758070

RESUMO

In this study, we investigated the association between short-term exposure to different sources of fine particulate matter (PM2.5) and biomarkers of coagulation and inflammation in two different panels of elderly and healthy young individuals in central Tehran. Five biomarkers, including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF) were analyzed in the blood samples drawn every 8 weeks from the subjects between May 2012 and May 2013. The studied populations consisted of 44 elderly individuals at a retirement home as well as 40 young adults residing at a school dormitory. Positive Matrix Factorization (PMF)-resolved source-specific PM2.5 mass concentrations and biomarker levels were used as the input to the linear mixed-effects regression model to evaluate the impact of exposure to previously identified PM sources at retirement home and school dormitory in two time lag configurations: lag 1-3 (1-3 days before the blood sampling), and lag 4-6 (4-6 days before the blood sampling). Our analysis of the elderly revealed positive associations of all biomarkers (except hsCRP) with particles of secondary origin in both time lags, further corroborating the toxicity of secondary aerosols formed by photochemical processing in central Tehran. Moreover, industrial emissions, and road dust particles were positively associated with WBC, sTNF-RII, and IL-6 among seniors, while vehicular emissions exhibited positive associations with all biomarkers in either first- or second-time lag. In contrast, most of the PM2.5 sources showed insignificant associations with biomarkers of inflammation in the panel of healthy young subjects. Therefore, findings from this study indicated that various PM2.5 sources increase the levels of inflammation and coagulation biomarkers, although the strength and significance of these associations vary depending on the type of PM sources, demographic characteristics, and differ across the different time lags. Implications: Tehran, the capital of Iran with a population of more than 9 million people, has been facing serious air pollution challenges as a result of extensive vehicular, and industrial activities in the previous years. Among various air pollutants in Tehran, fine particulate matters (PM2.5, particles with aerodynamic diameters < 2.5 µm) are known as one of the most important critical pollutants, causing several adverse health impacts including lung cancer, respiratory, cardiovascular, and cardiopulmonary diseases. Therefore, a number of studies in the area have tried to investigate the adverse health impacts of exposure to PM2.5. However, no studies have ever been conducted in Tehran to examine the association between specific PM2.5 sources and biomarkers of coagulation and systemic inflammation as indicators of cardiovascular disorders. Indeed, this is the first study in the area investigating the association of source-specific PM2.5 with biomarkers of inflammation including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF). Our results have important implications for policy makers in identifying the most toxic sources of PM2.5, and in turn designing schemes for mitigating adverse health impacts of air pollution in Tehran.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Inflamação , Adulto , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Biomarcadores , Exposição Ambiental/análise , Humanos , Inflamação/induzido quimicamente , Inflamação/epidemiologia , Irã (Geográfico)/epidemiologia , Material Particulado/análise , Material Particulado/toxicidade
9.
Faraday Discuss ; 226: 74-99, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33241815

RESUMO

This study aimed to investigate the long-term variations in the contributions of emission sources to ambient PM2.5 organic carbon (OC) in central Los Angeles (CELA) and Riverside using the Chemical Speciation Network (CSN) database in the 2005-2015 period, during which several federal and state PM-based regulations were implemented to reduce tailpipe emissions in the region. The measured concentrations of OC, OC volatility fractions (i.e., OC1, OC2, and OC3), elemental carbon (EC), ozone (O3), sulfate, the ratio of potassium ion to potassium (K+/K), and selected metal elements were used as the input to the positive matrix factorization (PMF) model. PMF resolved tailpipe emissions, non-tailpipe emissions, secondary organic aerosols (SOA), biomass burning, and local industrial activities as the main sources contributing to ambient OC at both sampling sites. Vehicular exhaust emissions, non-tailpipe emissions, and SOA were dominant sources of OC across our sampling sites, accounting cumulatively for more than 80% of total OC mass throughout the study period. Our findings showed a significant reduction in the absolute and relative contributions of tailpipe emissions to the ambient OC levels in CELA and Riverside over the time period of 2005-2015. The contribution of exhaust emissions to total OC in CELA decreased from 3.5 µg m-3 (49%) in 2005 to 1.5 µg m-3 (34%) in 2015, while similar trends were observed at Riverside during this period. These reductions are mainly attributed to the implementation of several federal, state, and local air quality regulations targeting tailpipe emissions in the area. The implementation of these regulations furthermore reduced the emissions of primary organic precursors of secondary aerosols, resulting in an overall decrease (although not statistically significant, P values ranging from 0.4 to 0.6) in SOA mass concentration in both locations over the study period. In contrast to the tailpipe emissions, we observed an increasing trend (by ∼4 to 14%) in the relative contribution of non-tailpipe emissions to OC over this time period at both sites. Our results demonstrated the effectiveness of air quality regulations in reducing direct tailpipe emissions in the area, but also underpinned the need to develop equally effective mitigation policies targeting non-tailpipe PM emissions.

10.
Sci Total Environ ; 758: 143582, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213922

RESUMO

The goal of this study was to characterize changes in components and toxicological properties of PM2.5 during the nationwide 2019-Coronavirus (COVID-19) lockdown restrictions in Milan, Italy. Time-integrated PM2.5 filters were collected at a residential site in Milan metropolitan area from April 11th to June 3rd at 2020, encompassing full-lockdown (FL), the followed partial-lockdown (PL2), and full-relaxation (FR) periods of COVID-19 restrictions. The collected filters were analyzed for elemental and organic carbon (EC/OC), water-soluble organic carbon (WSOC), individual organic species (e.g., polycyclic aromatic hydrocarbons (PAHs), and levoglucosan), and metals. According to online data, nitrogen dioxide (NO2) and benzene (C6H6) levels significantly decreased during the entire COVID-19 period compared to the same time span in 2019, mainly due to the government-backed shutdowns and curtailed road traffic. Similarly, with a few exceptions, surrogates of tailpipe emissions (e.g., traffic-associated PAHs) as well as re-suspended road dust (e.g., Fe, Mn, Cu, Cr, and Ti) were relatively lower during FL and PL2 periods in comparison with year 2019, whereas an increasing trend in mass concentration of mentioned species was observed from FL to PL2 and FR phases due to the gradual lifting of lockdown restrictions. In contrast, comparable concentrations of ambient PM2.5 and black carbon (BC) between lockdown period and the same time span in 2019 were attributed to the interplay between decreased road traffic and elevated domestic biomass burning as a result of adopted stay-home strategies. Finally, the curtailed road traffic during FL and PL2 periods led to ~25% drop in the PM2.5 oxidative potential (measured via 2',7'-dichlorodihydrofluorescein (DCFH) and dithiothreitol (DTT) assays) with respect to the FR period as well as the same time span in 2019. The results of this study provide insights into the changes in components and oxidative potential of PM2.5 in the absence of road traffic during COVID-19 restrictions.


Assuntos
Poluentes Atmosféricos , COVID-19 , Coronavirus , Poluentes Atmosféricos/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Itália , Pandemias , Material Particulado/análise , Políticas , SARS-CoV-2 , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...