Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37367561

RESUMO

Leaf litter is an essential functional aspect of forest ecosystems, acting as a source of organic matter, a protective layer in forest soils, and a nurturing habitat for micro- and macro-organisms. Through their successional occurrence, litter-inhabiting microfungi play a key role in litter decomposition and nutrient recycling. Despite their importance in terrestrial ecosystems and their abundance and diversity, information on the taxonomy, diversity, and host preference of these decomposer taxa is scarce. This study aims to clarify the taxonomy and phylogeny of four saprobic fungal taxa inhabiting Dipterocarpus alatus leaf litter. Leaf litter samples were collected from Doi Inthanon National Park in Chiang Mai, northern Thailand. Fungal isolates were characterized based on morphology and molecular phylogeny of the nuclear ribosomal DNA (ITS, LSU) and protein-coding genes (tub2, tef1-α, rpb2). One novel saprobic species, Ciliochorella dipterocarpi, and two new host records, Pestalotiopsis dracontomelon and Robillarda australiana, are introduced. The newly described taxa are compared with similar species, and comprehensive descriptions, micrographs, and phylogenetic trees are provided.

2.
Plants (Basel) ; 11(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079578

RESUMO

The NmrA-like proteins have been reported to be important nitrogen metabolism regulators and virulence factors in herbaceous plant pathogens. However, their role in the woody plant pathogen Lasiodiplodia theobromae is less clear. In the current study, we identified a putative NmrA-like protein, Lws1, in L. theobromae and investigated its pathogenic role via gene silencing and overexpression experiments. We also evaluated the effects of external carbon and nitrogen sources on Lws1 gene expression via qRT-PCR assays. Moreover, we analyzed the molecular interaction between Lws1 and its target protein via the yeast two-hybrid system. The results show that Lws1 contained a canonical glycine-rich motif shared by the short-chain dehydrogenase/reductase (SDR) superfamily proteins and functioned as a negative regulator during disease development. Transcription profiling revealed that the transcription of Lws1 was affected by external nitrogen and carbon sources. Interaction analyses demonstrated that Lws1 interacted with a putative GATA family transcription factor, LtAreA. In conclusion, these results suggest that Lws1 serves as a critical regulator in nutrition metabolism and disease development during infection.

3.
MycoKeys ; 79: 173-192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958954

RESUMO

Collections of fungal samples from two dead leaf specimens from Italy were subjected to morphological examination and phylogenetic analyses. Two coelomycetous taxa belonging to two different genera in Xylariomycetidae, Sordariomycetes, namely Discosia and Sporocadus, were identified. The Discosia taxon is revealed as a new species and is herein introduced as Discosia ravennica sp. nov. while the Sporocadus taxon is identified as Sporocadus rosigena. Multi-locus phylogeny based on DNA sequence data of the large subunit (LSU) and internal transcribed spacer (ITS) of nuclear ribosomal genes, ß-tubulin (ß-tub) and RNA polymerase II second largest subunit (rpb2) showed that D. ravennica is related to D. neofraxinea but it forms an independent lineage that supports its new species status. The new taxon also differs from other Discosia species by its unilocular to bilocular, superficial and applanate conidiomata with basal stroma composed of cells of textura angularis, elongate-ampulliform conidiogenous cells and conidia smaller in size. Sporocadus rosigena is here reported as a new host record from Quercus ilex from Italy. Descriptions, illustrations and molecular data for both species are provided in this paper.

4.
Mycobiology ; 48(3): 169-183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37970567

RESUMO

Nigrospora is a monophyletic genus belonging to Apiosporaceae. Species in this genus are phytopathogenic, endophytic, and saprobic on different hosts. In this study, leaf specimens with disease symptoms were collected from host plants from the Shandong Peninsula, China. The fungal taxa associated with these leaf spots were studied using morphology and phylogeny based on ITS, TEF1, and TUB2 gene regions. In this article, we report on the genus Nigrospora with N. gorlenkoana, N. oryzae, N. osmanthi, N. rubi, and N. sphaerica identified with 13 novel host associations including crops with economic importance such as bamboo and Chinese rose.

5.
BMC Infect Dis ; 17(1): 631, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927397

RESUMO

BACKGROUND: Infectious disease is the leading cause of death worldwide, and diagnosis of polymicrobial and fungal infections is increasingly challenging in the clinical setting. Conventionally, molecular detection is still the best method of species identification in clinical samples. However, the limitations of Sanger sequencing make diagnosis of polymicrobial infections one of the biggest hurdles in treatment. The development of massively parallel sequencing or next generation sequencing (NGS) has revolutionized the field of metagenomics, with wide application of the technology in identification of microbial communities in environmental sources, human gut and others. However, to date there has been no commercial application of this technology in infectious disease diagnostic settings. METHODS: Credence Genomics Rapid Infection Detection™ test, is a molecular based diagnostic test that uses next generation sequencing of bacterial 16S rRNA gene and fungal ITS1 gene region to provide accurate identification of species within a clinical sample. Here we present a study comparing 16S and ITS1 metagenomic identification against conventional culture for clinical samples. Using culture results as gold standard, a comparison was conducted using patient specimens from a clinical microbiology lab. RESULTS: Metagenomics based results show a 91.8% concordance rate for culture positive specimens and 52.8% concordance rate with culture negative samples. 10.3% of specimens were also positive for fungal species which was not investigated by culture. Specificity and sensitivity for metagenomics analysis is 91.8 and 52.7% respectively. CONCLUSION: 16S based metagenomic identification of bacterial species within a clinical specimen is on par with conventional culture based techniques and when coupled with clinical information can lead to an accurate diagnostic tool for infectious disease diagnosis.


Assuntos
Infecções Bacterianas/diagnóstico , Metagenômica/métodos , Técnicas Microbiológicas/métodos , Micoses/diagnóstico , RNA Ribossômico 16S , Bactérias/genética , Infecções Bacterianas/microbiologia , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Técnicas de Diagnóstico Molecular , Micoses/microbiologia , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...