Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflamm Bowel Dis ; 30(1): 103-113, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37436905

RESUMO

BACKGROUND: Clostridioides difficile infection (CDI) is an opportunistic infection of the gastrointestinal tract, commonly associated with antibiotic administration, that afflicts almost 500 000 people yearly only in the United States. CDI incidence and recurrence is increased in inflammatory bowel disease (IBD) patients. Omilancor is an oral, once daily, first-in-class, gut-restricted, immunoregulatory therapeutic in clinical development for the treatment of IBD. METHODS: Acute and recurrent murine models of CDI and the dextran sulfate sodium-induced concomitant model of IBD and CDI were utilized to determine the therapeutic efficacy of oral omilancor. To evaluate the protective effects against C. difficile toxins, in vitro studies with T84 cells were also conducted. 16S sequencing was employed to characterize microbiome composition. RESULTS: Activation of the LANCL2 pathway by oral omilancor and its downstream host immunoregulatory changes decreased disease severity and inflammation in the acute and recurrence models of CDI and the concomitant model of IBD/CDI. Immunologically, omilancor treatment increased mucosal regulatory T cell and decreased pathogenic T helper 17 cell responses. These immunological changes resulted in increased abundance and diversity of tolerogenic gut commensal bacterial strains in omilancor-treated mice. Oral omilancor also resulted in accelerated C. difficile clearance in an antimicrobial-free manner. Furthermore, omilancor provided protection from toxin damage, while preventing the metabolic burst observed in intoxicated epithelial cells. CONCLUSIONS: These data support the development of omilancor as a novel host-targeted, antimicrobial-free immunoregulatory therapeutic for the treatment of IBD patients with C. difficile-associated disease and pathology with the potential to address the unmet clinical needs of ulcerative colitis and Crohn's disease patients with concomitant CDI.


Omilancor is an oral, gut-restricted first-in-class immunoregulatory therapeutic for the treatment of inflammatory bowel disease (IBD). This study demonstrates for the first time that omilancor provides therapeutic efficacy in models of acute and recurrent Clostridioides difficile infection (CDI), and concomitant CDI and IBD, by increasing regulatory T cell function while suppressing effector responses, plus modulating gut microbiome composition and preserving epithelial barrier function.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Doenças Inflamatórias Intestinais/complicações , Antibacterianos/uso terapêutico , Infecções por Clostridium/microbiologia , Doença de Crohn/tratamento farmacológico , Proteínas de Membrana , Proteínas de Ligação a Fosfato
2.
Inflamm Bowel Dis ; 30(4): 671-680, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37934790

RESUMO

Lanthionine synthetase C-like 2 (LANCL2) therapeutics have gained increasing recognition as a novel treatment modality for a wide range of autoimmune diseases. Genetic ablation of LANCL2 in mice results in severe inflammatory phenotypes in inflammatory bowel disease (IBD) and lupus. Pharmacological activation of LANCL2 provides therapeutic efficacy in mouse models of intestinal inflammation, systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and psoriasis. Mechanistically, LANCL2 activation enhances regulatory CD4 + T cell (Treg) responses and downregulates effector responses in the gut. The stability and suppressive capacities of Treg cells are enhanced by LANCL2 activation through engagement of immunoregulatory mechanisms that favor mitochondrial metabolism and amplify IL-2/CD25 signaling. Omilancor, the most advanced LANCL2 immunoregulatory therapeutic in late-stage clinical development, is a phase 3 ready, first-in-class, gut-restricted, oral, once-daily, small-molecule therapeutic in clinical development for the treatment of UC and CD. In this review, we discuss this novel mechanism of mucosal immunoregulation and how LANCL2-targeting therapeutics could help address the unmet clinical needs of patients with autoimmune diseases, starting with IBD.


Oral LANCL2 therapeutics are a safe and effective treatment modality for the long-term management of autoimmune diseases, including UC and CD, without causing systemic immunosuppression. This review discusses in detail the immunoregulatory mechanisms of action of LANCL2 therapeutics. More specifically, the article describes how omilancor, a first-in-class, oral, once daily, gut-restricted LANCL2 therapeutic could help address the unmet clinical needs of patients with IBD and other immune-mediated diseases.


Assuntos
Doenças Autoimunes , Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Linfócitos T Reguladores/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Fosfato
3.
Sci Rep ; 13(1): 14708, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679643

RESUMO

Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea, and its clinical symptoms can span from asymptomatic colonization to pseudomembranous colitis and even death. The current standard of care for CDI is antibiotic treatment to achieve bacterial clearance; however, 15 to 35% of patients experience recurrence after initial response to antibiotics. We have conducted a comprehensive, global colonic transcriptomics analysis of a 10-day study in mice to provide new insights on the local host response during CDI and identify novel host metabolic mechanisms with therapeutic potential. The analysis indicates major alterations of colonic gene expression kinetics at the acute infection stage, that are restored during the recovery phase. At the metabolic level, we observe a biphasic response pattern characterized by upregulated glycolytic metabolism during the peak of inflammation, while mitochondrial metabolism predominates during the recovery/healing stage. Inhibition of glycolysis via 2-Deoxy-D-glucose (2-DG) administration during CDI decreases disease severity, protects from mortality, and ameliorates colitis in vivo. Additionally, 2-DG also protects intestinal epithelial cells from C. difficile toxin damage, preventing loss of barrier integrity and secretion of proinflammatory mediators. These data postulate the pharmacological targeting of host immunometabolic pathways as novel treatment modalities for CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Camundongos , Inflamação , Colo , Infecções por Clostridium/tratamento farmacológico , Gravidade do Paciente , Antibacterianos
4.
Front Microbiol ; 10: 623, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024470

RESUMO

Bacteria adapt to different environments by regulating cell division and several conditions that modulate cell division have been documented. Understanding how bacteria transduce environmental signals to control cell division is critical in understanding the global network of cell division regulation. In this article we describe a role for Bacillus subtilis YpsA, an uncharacterized protein of the SLOG superfamily of nucleotide and ligand-binding proteins, in cell division. We observed that YpsA provides protection against oxidative stress as cells lacking ypsA show increased susceptibility to hydrogen peroxide treatment. We found that the increased expression of ypsA leads to filamentation and disruption of the assembly of FtsZ, the tubulin-like essential protein that marks the sites of cell division in B. subtilis. We also showed that YpsA-mediated filamentation is linked to the growth rate. Using site-directed mutagenesis, we targeted several conserved residues and generated YpsA variants that are no longer able to inhibit cell division. Finally, we show that the role of YpsA is possibly conserved in Firmicutes, as overproduction of YpsA in Staphylococcus aureus also impairs cell division.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...