Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 335: 290-305, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34044092

RESUMO

To improve patient compliance and personalised drug delivery, long-acting drug delivery devices (LADDDs), such as implants and inserts, greatly benefit from a customisation in their shape through the emerging 3D-printing technology, since their production usually follows a one-size-fits-most approach. The use of 3D-printing for LADDDs, however, is mainly limited by the shortage of flawlessly 3D-printable, yet biocompatible materials. The present study tackles this issue by introducing a novel, non-biodegradable material, namely a polyester-based thermoplastic elastomer (TPC) - a multi-block copolymer containing alternating semi-crystalline polybutylene terephthalate hard segments and poly-ether-terephthalate amorphous soft segments. Next to a detailed description of the material's 3D-printability by mechanical, rheological and thermal analyses, which was found to be superior to that of conventional polymers (ethylene-vinyl acetates (EVA)), this study establishes the fundamental understandings of the interactions between progesterone (P4) and TPC and drug-releasing properties of TPC for the first time. P4-loaded LADDDs based on TPC, prepared via an elaborated solvent-immersion technique, enable the release of P4 at pharmacologically relevant rates, similar to those of marketed formulations based on EVA and silicones. Additionally, TPC demonstrated an exceptional 3D-printability for a wide selection of implant sizes and complex geometries.


Assuntos
Elastômeros , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Poliésteres , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...