Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998124

RESUMO

Comprehending the immune defense mechanisms of new aquaculture species, such as the Chilean meagre (Cilus gilberti), is essential for sustaining large-scale production. Two bioassays were conducted to assess the impact of acute and intermittent hypoxia on the antibacterial activity of juvenile Chilean meagre epidermal mucus against the potential pathogens Vibrio anguillarum and Vibrio ordalii. Lysozyme and peroxidase activities were also measured. In general, fish exposed to hypoxia showed a 9-30% reduction in mucus antibacterial activity at the end of hypoxic periods and after stimulation with lipopolysaccharide. However, following water reoxygenation, the activity of non-stimulated fish was comparable to that of fish in normoxic conditions, inhibiting bacterial growth by 35-52%. In the case of fish exposed to chronic hypoxia, the response against V. anguillarum increased by an additional 19.8% after 6 days of control inoculation. Lysozyme exhibited a similar pattern, while no modulation of peroxidase activity was detected post-hypoxia. These results highlight the resilience of C. gilberti to dissolved oxygen fluctuations and contribute to understanding the potential of mucus in maintaining the health of cultured fish and the development of future control strategies.

2.
J Phys Chem B ; 128(20): 5044-5054, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727627

RESUMO

In this work, the vapor-liquid-liquid equilibrium (VLLE) of the water/n-pentane, water/n-hexane, water/n-octane, and water/n-decane binary systems is calculated by computer simulation using the NVT-Gibbs ensemble (in the version of three simulation boxes) combined with the configurational bias Monte Carlo method. The combination of both methods, the molecular potential models used, and the simulation details allowed us to calculate the triphasic equilibrium properties of the systems studied: the densities of the three phases in equilibrium, their compositions, and potential energies. In previous works, these simulations were not carried out at a temperature range nor water/n-alkanes systems simulated in this work, probably because they are highly nonideal systems; so, to the best of our knowledge, this is the first time that this phenomenon is studied in detail. The results from VLLE simulations of the water/n-pentane system for temperatures from 343.2 to 435 K, the water/n-hexane system for temperatures from 373.11 to 473.15 K, the water/n-octane system for temperatures from 310.9 to 500 K, and for the water/n-decane system for temperatures from 374.15 to 525 K are reported here. The temperature range was selected in concordance with the experimental data available for an adequate study of the VLLE simulation results. The subcritical densities (vapor and liquid rich in n-alkane phases) at various temperatures fit well with the scaling law and the law of rectilinear diameters, allowing the estimation of upper critical end point temperature and density of the VLLE. The simulation results show a good prediction with experimental data reports in the literature.

3.
J Chem Phys ; 138(18): 184901, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23676068

RESUMO

Equilibrium and non-equilibrium molecular dynamics were performed to determine the relationship between the static structure factor, the molecular conformation, and the rheological properties of chain molecules. A spring-monomer model with Finitely Extensible Nonlinear Elastic and Lennard-Jones force field potentials was used to describe chain molecules. The equations of motion were solved for shear flow with SLLOD equations of motion integrated with Verlet's algorithm. A multiple time scale algorithm extended to non-equilibrium situations was used as the integration method. Concentric circular patterns in the structure factor were obtained, indicating an isotropic Newtonian behavior. Under simple shear flow, some peaks in the structure factor were emerged corresponding to an anisotropic pattern as chains aligned along the flow direction. Pure chain molecules and chain molecules in solution displayed shear-thinning regions. Power-law and Carreau-Yasuda models were used to adjust the generated data. Results are in qualitative agreement with rheological and light scattering experiments.


Assuntos
Simulação de Dinâmica Molecular , Polímeros/química , Algoritmos , Estrutura Molecular , Reologia
4.
ACS Nano ; 6(1): 720-35, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22133430

RESUMO

Single-walled carbon nanotubes (SCWNTs) have outstanding properties that depend on structural features such as their chirality. Thus, developing a strategy to control chirality during SWCNT synthesis is critical for the exploitation of nanotube-based technologies in fields such as electronics and biomedicine. In response to this need, tuning the nanocatalyst structure has been envisioned as a means to control the nanotube structure. We use reactive classical molecular dynamics to simulate nanotube growth on supported Ni(32), Ni(80), and Ni(160) nanoparticles at various metal/support interaction strengths (E(adh)). The initial carbon ring formation is shown to correlate to the nanoparticle surface structure, demonstrating the existence of a "template effect" through a dominant occupation of hollow sites. The E(adh) strength alters the dynamic/structural behavior of the nanoparticle, in turn influencing the interplay between nanotube and nanoparticle structures. For example, the contact region between the nanoparticle surface and the growing nanotube decreases as E(adh) increases because capillary forces that raise the metal into the nanotube are counteracted by the strong metal/support interaction. The nanoparticle mobility decreases as E(adh) increases, eliminating a possible inverse template effect but hindering defect annealing in detriment of the nanotube/nanoparticle structural correlation. On the other hand, the contact between the nanoparticle and the nanotube increases with nanoparticle size. However, the heterogeneity of the nanoparticle structure increases with size, reducing the structural correlation. These results suggest that an appropriate combination of nanoparticle size and strength of the catalyst/support interaction may enhance the desired template effect and bias formation of specific nanotube chiralities.


Assuntos
Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Níquel/química , Catálise , Simulação por Computador , Tamanho da Partícula
5.
J Chem Phys ; 123(5): 054907, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16108693

RESUMO

Nonequilibrium molecular-dynamics simulations are performed for linear and branched chain molecules to study their rheological and structural properties under simple shear and Poiseuille flows. Molecules are described by a spring-monomer model with a given intermolecular potential. The equations of motion are solved for shear and Poiseuille flows with Lees and Edward's [A. W. Lees and S. F. Edwards, J. Phys. C 5, 1921 (1972)] periodic boundary conditions. A multiple time-scale algorithm extended to nonequilibrium situations is used as the integration method, and the simulations are performed at constant temperature using Nose-Hoover [S. Nose, J. Chem. Phys. 81, 511 (1984)] dynamics. In simple shear, molecules with flow-induced ellipsoidal shape, having significant segment concentrations along the gradient and neutral directions, exhibit substantial flow resistance. Linear molecules have larger zero-shear-rate viscosity than that of branched molecules, however, this behavior reverses as the shear rate is increased. The relaxation time of the molecules is associated with segment concentrations directed along the gradient and neutral directions, and hence it depends on structure and molecular weight. The results of this study are in qualitative agreement with other simulation studies and with experimental data. The pressure (Poiseuille) flow is induced by an external force F(e) simulated by confining the molecules in the region between surfaces which have attractive forces. Conditions at the boundary strongly influence the type of the slip flow predicted. A parabolic velocity profile with apparent slip on the wall is predicted under weakly attractive wall conditions, independent of molecular structure. In the case of strongly attractive walls, a layer of adhered molecules to the wall produces an abrupt distortion of the velocity profile which leads to slip between fluid layers with magnitude that depends on the molecular structure. Finally, the molecular deformation under flow depends on the attractive force of the wall, in such a way that molecules are highly deformed in the case of strong attracting walls.

6.
J Colloid Interface Sci ; 272(2): 444-56, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15028510

RESUMO

The critical flocculation density (CFD), that is, the CO(2) density below which flocculation occurs, was studied for dilute water-in-CO(2) (W/C) miniemulsions stabilized with poly(1,1-dihydroperfluorooctyl methacrylate)-b-poly(ethylene oxide) (PFOMA-b-PEO) surfactants. The CFD, which was measured by turbidimetry, decreased as the PFOMA molecular weight was increased, the average droplet size was decreased, the surfactant loading was increased, and the temperature was increased. A simple model, which addressed both the van der Waals attraction between droplets and osmotic solvent-tail interactions, was in good qualitative agreement with the experimentally observed trends for the CFD and predicted a decrease in emulsion stability as the CO(2) density was lowered toward the theta density for PFOMA in bulk CO(2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...