Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Sel Evol ; 55(1): 76, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919645

RESUMO

BACKGROUND: Hoof structure and health are essential for the welfare and productivity of beef cattle. Therefore, we assessed the genetic and genomic background of foot score traits in American (US) and Australian (AU) Angus cattle and investigated the feasibility of performing genomic evaluations combining data for foot score traits recorded in US and AU Angus cattle. The traits evaluated were foot angle (FA) and claw set (CS). In total, 109,294 and ~ 1.12 million animals had phenotypic and genomic information, respectively. Four sets of analyses were performed: (1) genomic connectedness between US and AU Angus cattle populations and population structure, (2) estimation of genetic parameters, (3) single-step genomic prediction of breeding values, and (4) single-step genome-wide association studies for FA and CS. RESULTS: There was no clear genetic differentiation between US and AU Angus populations. Similar heritability estimates (FA: 0.22-0.24 and CS: 0.22-0.27) and moderate-to-high genetic correlations between US and AU foot scores (FA: 0.61 and CS: 0.76) were obtained. A joint-genomic prediction using data from both populations outperformed within-country genomic evaluations. A genomic prediction model considering US and AU datasets as a single population performed similarly to the scenario accounting for genotype-by-environment interactions (i.e., multiple-trait model considering US and AU records as different traits), even though the genetic correlations between countries were lower than 0.80. Common significant genomic regions were observed between US and AU for FA and CS. Significant single nucleotide polymorphisms were identified on the Bos taurus (BTA) chromosomes BTA1, BTA5, BTA11, BTA13, BTA19, BTA20, and BTA23. The candidate genes identified were primarily from growth factor gene families, including FGF12 and GDF5, which were previously associated with bone structure and repair. CONCLUSIONS: This study presents comprehensive population structure and genetic and genomic analyses of foot scores in US and AU Angus cattle populations, which are essential for optimizing the implementation of genomic selection for improved foot scores in Angus cattle breeding programs. We have also identified candidate genes associated with foot scores in the largest Angus cattle populations in the world and made recommendations for genomic evaluations for improved foot score traits in the US and AU.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Bovinos/genética , Animais , Estudo de Associação Genômica Ampla/veterinária , Austrália , Fenótipo , Genótipo , Genômica , Polimorfismo de Nucleotídeo Único
2.
Genet Sel Evol ; 55(1): 3, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658485

RESUMO

BACKGROUND: Longitudinal records of temperament can be used for assessing behavioral plasticity, such as aptness to learn, memorize, or change behavioral responses based on affective state. In this study, we evaluated the phenotypic and genomic background of North American Angus cow temperament measured throughout their lifetime around the weaning season, including the development of a new indicator trait termed docility-based learning and behavioral plasticity. The analyses included 273,695 and 153,898 records for yearling (YT) and cow at weaning (CT) temperament, respectively, 723,248 animals in the pedigree, and 8784 genotyped animals. Both YT and CT were measured when the animal was loading into/exiting the chute. Moreover, CT was measured around the time in which the cow was separated from her calf. A random regression model fitting a first-order Legendre orthogonal polynomial was used to model the covariance structure of temperament and to assess the learning and behavioral plasticity (i.e., slope of the regression) of individual cows. This study provides, for the first time, a longitudinal perspective of the genetic and genomic mechanisms underlying temperament, learning, and behavioral plasticity in beef cattle. RESULTS: CT measured across years is heritable (0.38-0.53). Positive and strong genetic correlations (0.91-1.00) were observed among all CT age-group pairs and between CT and YT (0.84). Over 90% of the candidate genes identified overlapped among CT age-groups and the estimated effect of genomic markers located within important candidate genes changed over time. A small but significant genetic component was observed for learning and behavioral plasticity (heritability = 0.02 ± 0.002). Various candidate genes were identified, revealing the polygenic nature of the traits evaluated. The pathways and candidate genes identified are associated with steroid and glucocorticoid hormones, development delay, cognitive development, and behavioral changes in cattle and other species. CONCLUSIONS: Cow temperament is highly heritable and repeatable. The changes in temperament can be genetically improved by selecting animals with favorable learning and behavioral plasticity (i.e., habituation). Furthermore, the environment explains a large part of the variation in learning and behavioral plasticity, leading to opportunities to also improve the overall temperament by refining management practices. Moreover, behavioral plasticity offers opportunities to improve the long-term animal and handler welfare through habituation.


Assuntos
Genômica , Temperamento , Feminino , Bovinos/genética , Animais , Temperamento/fisiologia , Genótipo , Fenótipo , América do Norte
3.
Front Genet ; 13: 794625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444687

RESUMO

Cattle temperament has been considered by farmers as a key breeding goal due to its relevance for cattlemen's safety, animal welfare, resilience, and longevity and its association with many economically important traits (e.g., production and meat quality). The definition of proper statistical models, accurate variance component estimates, and knowledge on the genetic background of the indicator trait evaluated are of great importance for accurately predicting the genetic merit of breeding animals. Therefore, 266,029 American Angus cattle with yearling temperament records (1-6 score) were used to evaluate statistical models and estimate variance components; investigate the association of sex and farm management with temperament; assess the weighted correlation of estimated breeding values for temperament and productive, reproductive efficiency and resilience traits; and perform a weighted single-step genome-wide association analysis using 69,559 animals genotyped for 54,609 single-nucleotide polymorphisms. Sex and extrinsic factors were significantly associated with temperament, including conception type, age of dam, birth season, and additional animal-human interactions. Similar results were observed among models including only the direct additive genetic effect and when adding other maternal effects. Estimated heritability of temperament was equal to 0.39 on the liability scale. Favorable genetic correlations were observed between temperament and other relevant traits, including growth, feed efficiency, meat quality, and reproductive traits. The highest approximated genetic correlations were observed between temperament and growth traits (weaning weight, 0.28; yearling weight, 0.28). Altogether, we identified 11 genomic regions, located across nine chromosomes including BTAX, explaining 3.33% of the total additive genetic variance. The candidate genes identified were enriched in pathways related to vision, which could be associated with reception of stimulus and/or cognitive abilities. This study encompasses large and diverse phenotypic, genomic, and pedigree datasets of US Angus cattle. Yearling temperament is a highly heritable and polygenic trait that can be improved through genetic selection. Direct selection for temperament is not expected to result in unfavorable responses on other relevant traits due to the favorable or low genetic correlations observed. In summary, this study contributes to a better understanding of the impact of maternal effects, extrinsic factors, and various genomic regions associated with yearling temperament in North American Angus cattle.

4.
Animals (Basel) ; 11(3)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800722

RESUMO

The main objectives of this study were to perform a systematic review of genomic regions associated with various behavioral traits in the main farmed mammals and identify key candidate genes and potential causal mutations by contrasting the frequency of polymorphisms in cattle breeds with divergent behavioral traits (based on a subjective clustering approach). A total of 687 (cattle), 1391 (pigs), and 148 (sheep) genomic regions associated with 37 (cattle), 55 (pigs), and 22 (sheep) behavioral traits were identified in the literature. In total, 383, 317, and 15 genes overlap with genomic regions identified for cattle, pigs, and sheep, respectively. Six common genes (e.g., NR3C2, PITPNM3, RERG, SPNS3, U6, and ZFAT) were found for cattle and pigs. A combined gene-set of 634 human genes was produced through identified homologous genes. A total of 313 out of 634 genes have previously been associated with behavioral, mental, and neurologic disorders (e.g., anxiety and schizophrenia) in humans. Additionally, a total of 491 candidate genes had at least one statistically significant polymorphism (p-value < 0.05). Out of those, 110 genes were defined as having polymorphic regions differing in greater than 50% of exon regions. Therefore, conserved genomic regions controlling behavior were found across farmed mammal species and humans.

5.
Genes (Basel) ; 13(1)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-35052358

RESUMO

Behavior is a complex trait and, therefore, understanding its genetic architecture is paramount for the development of effective breeding strategies. The objective of this study was to perform traditional and weighted single-step genome-wide association studies (ssGWAS and WssGWAS, respectively) for yearling temperament (YT) in North American Angus cattle using haplotypes. Approximately 266 K YT records and 70 K animals genotyped using a 50 K single nucleotide polymorphisms (SNP) panel were used. Linkage disequilibrium thresholds (LD) of 0.15, 0.50, and 0.80 were used to create the haploblocks, and the inclusion of non-LD-clustered SNPs (NCSNP) with the haplotypes in the genomic models was also evaluated. WssGWAS did not perform better than ssGWAS. Cattle YT was found to be a highly polygenic trait, with genes and quantitative trait loci (QTL) broadly distributed across the whole genome. Association studies using LD-based haplotypes should include NCSNPs and different LD thresholds to increase the likelihood of finding the relevant genomic regions affecting the trait of interest. The main candidate genes identified, i.e., ATXN10, ADAM10, VAX2, ATP6V1B1, CRISPLD1, CAPRIN1, FA2H, SPEF2, PLXNA1, and CACNA2D3, are involved in important biological processes and metabolic pathways related to behavioral traits, social interactions, and aggressiveness in cattle. Future studies should further investigate the role of these candidate genes.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Haplótipos/genética , Temperamento/fisiologia , Animais , Bovinos , Frequência do Gene/genética , Genômica/métodos , Genótipo , Desequilíbrio de Ligação/genética , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
6.
Front Genet ; 11: 263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328083

RESUMO

As crossbreeding is extensively used in some livestock species, we aimed to evaluate the performance of single-step GBLUP (ssGBLUP) and weighted ssGBLUP (WssGBLUP) methods to predict Genomic Estimated Breeding Values (GEBVs) of crossbred animals. Different training population scenarios were evaluated: (SC1) ssGBLUP based on a single-trait model considering purebred and crossbred animals in a joint training population; (SC2) ssGBLUP based on a multiple-trait model to enable considering phenotypes recorded in purebred and crossbred training animals as different traits; (SC3) WssGBLUP based on a single-trait model considering purebred and crossbred animals jointly in the training population (both populations were used for SNP weights' estimation); (SC4) WssGBLUP based on a single-trait model considering only purebred animals in the training population (crossbred population only used for SNP weights' estimation); (SC5) WssGBLUP based on a single-trait model and the training population characterized by purebred animals (purebred population used for SNP weights' estimation). A complex trait was simulated assuming alternative genetic architectures. Different scaling factors to blend the inverse of the genomic (G -1) and pedigree ( A 22 - 1 ) relationship matrices were also tested. The predictive performance of each scenario was evaluated based on the validation accuracy and regression coefficient. The genetic correlations across simulated populations in the different scenarios ranged from moderate to high (0.71-0.99). The scenario mimicking a completely polygenic trait ( h Q T L 2 = 0) yielded the lowest validation accuracy (0.12; for SC3 and SC4). The simulated scenarios assuming 4,500 QTLs affecting the trait and h Q T L 2 = h 2 resulted in the greatest GEBV accuracies (0.47; for SC1 and SC2). The regression coefficients ranged from 0.28 (for SC3 assuming polygenic effect) to 1.27 (for SC2 considering 4,500 QTLs). In general, SC3 and SC5 resulted in inflated GEBVs, whereas other scenarios yielded deflated GEBVs. The scaling factors used to combine G -1 and A 22 - 1 had a small influence on the validation accuracies, but a greater effect on the regression coefficients. Due to the complexity of multiple-trait models and WssGBLUP analyses, and a similar predictive performance across the methods evaluated, SC1 is recommended for genomic evaluation in crossbred populations with similar genetic structures [moderate-to-high (0.71-0.99) genetic correlations between purebred and crossbred populations].

8.
Theriogenology ; 145: 126-137, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32028071

RESUMO

Three experiments evaluated ovarian dynamics and circulating progesterone (P4) during P4-based protocols initiated with GnRH, estradiol benzoate (EB), or no additional treatment in Nelore (Bos indicus) cattle. In Exp 1 (n = 59 cows), a 5-d P4-only protocol (P-5d; D0: P4 implant alone (1g); D5: P4 removal, 0.5 mg estradiol cypionate [EC], 0.526 mg cloprostenol [PGF], and 300 IU equine chorionic gonadotropin [eCG]; D7: 8.4 µg buserelin acetate [GnRH]) was compared to a 9d protocol initiated with EB (EB-9d; D0: 2 mg EB + P4; D9: P4 removal + EC + PGF + eCG), and to a 7d GnRH protocol (G-7d; D0: 16.8 µg GnRH + P4; D6: PGF + eCG; D7: P4 removal + PGF; D9: GnRH). Exp 2 (n = 55 cows) compared G-7d and EB-7d protocols (similar to EB-9d, but D9 treatments were done on D7). Exp 3 (n = 64 heifers) compared EB-7d, G-7d, and P-5d protocols. For all experiments, daily ovarian ultrasonography was done from D0 until 4d after implant withdrawal and blood samples were collected at D0 and first PGF. Follicle dynamics were determined for each individual animal, analyzed within individual experiments, and afterwards combined to determine overall effects of treatments. The protocol that began with GnRH, G-7d, had greater ovulation rate after D0 with subsequently greater number of CL and circulating P4 at time of PGF (52.8%, 1.0 ± 0.1 CL, 4.0 ± 0.4 ng/mL) than for EB protocols (12.1%, 0.4 ± 0.05 CL, 2.0 ± 0.2 ng/mL), or P-5d (2.5%, 0.6 ± 0.09 CL, 2.6 ± 0.3 ng/mL). The G-7d and EB protocols had synchronized follicle wave emergence in 92.1% of animals but with distinct patterns. For the G-7d group, wave emergence occurred earlier in ovulating than non-ovulating animals (1.4 ± 0.2 d vs 2.5 ± 0.4 d). By comparison, most animals in EB-7d or EB-9d (80.3%) displayed atresia of the dominant follicle, followed by wave emergence 2-3 d after EB treatment. In contrast, P-5d protocol synchronized wave emergence in only 30.0% of cows. Nevertheless, no differences among treatments were detected for ovulation at end of the protocol (85.7%). In conclusion, the P-5d protocol did not synchronize follicle wave emergence but produced similar final ovulation, whereas, GnRH and EB protocols had follicle dynamics synchronized by distinct mechanisms that produced differences in CL number and P4 at the time of PGF treatment but similar final ovulation. Based on ovarian function, each of these synchronization methods are promising for use in FTAI, although fertility still needs to be evaluated.


Assuntos
Bovinos , Inseminação Artificial/veterinária , Ovário/fisiologia , Ovulação/efeitos dos fármacos , Progesterona/farmacologia , Animais , Gonadotropina Coriônica/administração & dosagem , Gonadotropina Coriônica/farmacologia , Cloprostenol/administração & dosagem , Cloprostenol/farmacologia , Estradiol/administração & dosagem , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/farmacologia , Inseminação Artificial/métodos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/fisiologia , Ovário/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...