Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(690): eadd9779, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018418

RESUMO

Implantable tubes, shunts, and other medical conduits are crucial for treating a wide range of conditions from ears and eyes to brain and liver but often impose serious risks of device infection, obstruction, migration, unreliable function, and tissue damage. Efforts to alleviate these complications remain at an impasse because of fundamentally conflicting design requirements: Millimeter-scale size is required to minimize invasiveness but exacerbates occlusion and malfunction. Here, we present a rational design strategy that reconciles these trade-offs in an implantable tube that is even smaller than the current standard of care. Using tympanostomy tubes (ear tubes) as an exemplary case, we developed an iterative screening algorithm and show how unique curved lumen geometries of the liquid-infused conduit can be designed to co-optimize drug delivery, effusion drainage, water resistance, and biocontamination/ingrowth prevention in a single subcapillary-length-scale device. Through extensive in vitro studies, we demonstrate that the engineered tubes enabled selective uni- and bidirectional fluid transport; nearly eliminated adhesion and growth of common pathogenic bacteria, blood, and cells; and prevented tissue ingrowth. The engineered tubes also enabled complete eardrum healing and hearing preservation and exhibited more efficient and rapid antibiotic delivery to the middle ear in healthy chinchillas compared with current tympanostomy tubes, without resulting in ototoxicity at up to 24 weeks. The design principle and optimization algorithm presented here may enable tubes to be customized for a wide range of patient needs.


Assuntos
Otite Média com Derrame , Humanos , Otite Média com Derrame/diagnóstico , Ventilação da Orelha Média/métodos , Orelha Média/patologia , Próteses e Implantes , Antibacterianos
2.
Int J Pharm ; 610: 121287, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775044

RESUMO

Negatively charged dextran sulfate (DS)-chitosan nanoparticles (DSCS NPs) contain a DS outer shell with binding properties similar to those of heparin and are useful for the incorporation and delivery of therapeutic heparin-binding proteins. These particles, however, are unstable in physiological salt solutions due to their formation through electrostatic interactions. In the present study, a method was developed to covalently crosslink chitosan in the core of the DSCS NP with a short chain dicarboxylic acid (succinate), while leaving the outer shell of the particle untouched. The crosslinked particles, XDSCS NPs, are stable in NaCl solutions up to 3 M. XDSCS NPs were able to incorporate heparin-binding proteins (VEGF and SDF-1α) rapidly and efficiently, and maintain the full biological activity of the proteins. The incorporated proteins were not released from the particles after a 14-day incubation period at 37 °C in PBS, but retained the same activity as those stored at 4 °C. When aerosolized for delivery to the lungs of rats, XDSCS NP-incorporated SDF-1α showed a ∼17-fold greater retention time compared to that of free protein. These properties suggest that XDSCS NPs could be beneficial for the delivery of therapeutic heparin-binding proteins to achieve sustained in vivo effects.


Assuntos
Quitosana , Nanopartículas , Animais , Proteínas de Transporte , Quitosana/metabolismo , Sulfato de Dextrana , Portadores de Fármacos , Heparina , Ratos
3.
Sci Rep ; 11(1): 10675, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021211

RESUMO

Phase-change condensation is commonplace in nature and industry. Since the 1930s, it is well understood that vapor condenses in filmwise mode on clean metallic surfaces whereas it condenses by forming discrete droplets on surfaces coated with a promoter material. In both filmwise and dropwise modes, the condensate is removed when gravity overcomes pinning forces. In this work, we show rapid condensate transport through cracks that formed due to material shrinkage when a copper tube is coated with silica inverse opal structures. Importantly, the high hydraulic conductivity of the cracks promote axial condensate transport that is beneficial for condensation heat transfer. In our experiments, the cracks improved the heat transfer coefficient from ≈ 12 kW/m2 K for laminar filmwise condensation on smooth clean copper tubes to ≈ 80 kW/m2 K for inverse opal coated copper tubes; nearly a sevenfold increase from filmwise condensation and identical enhancement with state-of-the-art dropwise condensation. Furthermore, our results show that impregnating the porous structure with oil further improves the heat transfer coefficient by an additional 30% to ≈ 103 kW/m2 K. Importantly, compared to the fast-degrading dropwise condensation, the inverse opal coated copper tubes maintained high heat transfer rates when the experiments were repeated > 20 times; each experiment lasting 3-4 h. In addition to the new coating approach, the insights gained from this work present a strategy to minimize oil depletion during condensation from lubricated surfaces.

4.
ACS Nano ; 14(7): 8024-8035, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32490664

RESUMO

Due to recent advances in nanofabrication, phase-change condensation heat transfer has seen a renaissance. Compared to conventional heat transfer surfaces, nanostructured surfaces impregnated with chemically matched lubrication films (hereinafter referred to as "nanostructured lubricated surfaces") have been demonstrated to improve vapor-side phase-change condensation heat transfer by facilitating droplet nucleation, growth, and departure. While the presence of nanoscale roughness improves performance longevity by stabilizing the lubrication film via capillary forces, such enhancement is short-lived due to the eventual loss of lubrication oil by the departing droplets. The objective of this study is to characterize oil depletion caused by pendant droplets during condensation. For our study, we nanostructured, chemically functionalized, and lubricated horizontal copper tubes that are widely used in shell-and-tube heat exchangers in power plants and process industries. Using high-speed fluorescence imaging and thermogravimetric analysis, we show that shedding droplets exert a shear force on the oil in the wetting ridge at the water-oil interface. The viscous shear draws the lubrication film from the nanostructured surface onto the upper portion of the droplet and forms a ring-like oil skirt. Through detailed theoretical analysis, we show that the thickness of this oil skirt scales with the classical Landau-Levich-Derjaguin (LLD) theory for dip-coating. Our results reveal that droplets falling from horizontal tubes break unequally and leave behind small satellite droplets that retain the bulk of the oil in the wetting ridge. This observation is in stark contrast with the earlier description of droplets shedding from tilted flat plates where the entire oil-filled wetting ridge is demonstrated to leave the surface upon droplet departure. By selecting lubrication oils of varying viscosity and spreading coefficient, we provide evidence that the contribution of the wrapping layer to the rate of oil depletion is insignificant. Furthermore, we show that due to the nanoscale features on the tubes, nearly half of the lubrication film remains on the surface after 10 h of continuous steam condensation at ambient pressure, 23 °C, and 60% relative humidity, a 2-3-fold improvement over previous results.The insights gained from this work will provide guidelines for the rational design of long-lasting nanostructured lubricated surfaces for phase-change condensation.

5.
ACS Appl Mater Interfaces ; 12(28): 31922-31932, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531149

RESUMO

Corrosion and surface fouling of structural materials, such as concrete, are persistent problems accelerating undesirable material degradation for many industries and infrastructures. To counteract these detrimental effects, protective coatings are frequently applied, but these solid-based coatings can degrade or become mechanically damaged over time. Such irreversible and irreparable damage on solid-based protective coatings expose underlying surfaces and bulk materials to adverse environmental stresses leading to subsequent fouling and degradation. We introduce a new concept of a hybrid liquid-in-solid protective barrier (LIB) to overcome the limitations of traditional protective coatings with broad applicability to structural materials. Through optimization of capillary forces and reduction of the interfacial energy between an upper mobile liquid and a lower immobile solid phase, a stable liquid-based protective layer is created. This provides a persistent self-repairing barrier against the infiltration of moisture and salt, in addition to omniphobic surface properties. As a model experimental test bed, we applied this concept to cementitious materials, which are commonly used as binders in concrete, and investigated how the mobile liquid phase embedded within a porous solid support contributes to the material's barrier protection and antifouling properties. Using industry standard test methods for acid resistance, chloride-ion penetrability, freeze-thaw cyclability, and mechanical durability, we demonstrate that LIBs exhibit significantly reduced water absorption and ion penetrability, improved repellency against various nonaqueous liquids, and resistance to corrosion while maintaining their required mechanical performance as structural materials.

6.
ACS Nano ; 14(2): 2465-2474, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31994870

RESUMO

The development of liquid gating membrane (LGM) systems with tunable multiphase selectivity and antifouling properties is limited by the mechanical stability of the membrane materials. The mechanical integrity of most polymeric membranes can be compromised by deformation under harsh operating conditions (elevated temperatures, corrosive environments, foulants, etc.), ultimately leading to their failure. Here, a facile electrochemical approach to the fabrication of multifunctional metal-based liquid gating membrane systems is presented. The membrane porosity, pore size, and membrane surface roughness can be tuned from micro- to nanometer scale, enabling function under a variety of operating conditions. The prepared LGMs demonstrate controllable gas-liquid selectivity, superior resistance to corrosive conditions and fouling chemicals, and significant reduction of the transmembrane pressure required for the separation process, resulting in lower energy consumption. The stability of the gating liquid is confirmed experimentally through sustained fouling resistance and further supported by the interfacial energy calculations. The mechanically robust metal-based membrane systems reported in this study significantly extend the operating range of LGMs, prompting their applications in water treatment processes such as wastewater treatment, degassing, and multiphase separation.

7.
Biointerphases ; 13(6): 06D401, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30092645

RESUMO

The ability to control the properties of bio-inspired liquid-infused surfaces is of interest in a wide range of applications. Liquid layers created using oil-infused polydimethylsiloxane elastomers offer a potentially simple way of accomplishing this goal through the adjustment of parameters such as curing agent ratio and oil viscosity. In this work, the effect of tuning these compositional parameters on the properties of the infused polymer are investigated, including infusion dynamics, stiffness, longevity in the face of continuous liquid overlayer removal, and resistance to bacterial adhesion. It is found that that curing agent concentration appears to have the greatest impact on the functionality of the system, with a lower base-to-curing agent ratio resulting in both increased longevity and improved resistance to adhesion by Escherichia coli. A demonstration of how these findings may be implemented to introduce patterned wettability to the surface of the infused polymers is presented by controlling the spatial arrangement of bacteria. These results demonstrate a new degree of control over immobilized liquid layers and will facilitate their use in future applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Propriedades de Superfície , Antibacterianos/síntese química , Aderência Bacteriana/efeitos dos fármacos , Fenômenos Químicos , Dimetilpolisiloxanos/síntese química , Escherichia coli/fisiologia
8.
Small ; 14(18): e1702170, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29325208

RESUMO

Flexible and stretchable microscale fluidic devices have a broad range of potential applications, ranging from electronic wearable devices for convenient digital lifestyle to biomedical devices. However, simple ways to achieve stable flexible and stretchable fluidic microchannels with dynamic liquid transport have been challenging because every application for elastomeric microchannels is restricted by their complex fabrication process and limited material selection. Here, a universal strategy for building microfluidic devices that possess exceptionally stable and stretching properties is shown. The devices exhibit superior mechanical deformability, including high strain (967%) and recovery ability, where applications as both strain sensor and pressure-flow regulating device are demonstrated. Various microchannels are combined with organic, inorganic, and metallic materials as stable composite microfluidics. Furthermore, with surface chemical modification these stretchable microfluidic devices can also obtain antifouling property to suit for a broad range of industrial and biomedical applications.


Assuntos
Elastômeros/química , Microfluídica/métodos , Dispositivos Eletrônicos Vestíveis
9.
ACS Appl Mater Interfaces ; 6(15): 13299-307, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25006681

RESUMO

Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the self-replenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella salina, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.


Assuntos
Incrustação Biológica , Feixe Vascular de Plantas/fisiologia , Biofilmes/efeitos dos fármacos , Contagem de Células , Dimetilpolisiloxanos/farmacologia , Lubrificantes/toxicidade , Microalgas/citologia , Microalgas/efeitos dos fármacos , Feixe Vascular de Plantas/efeitos dos fármacos , Silicones/farmacologia , Propriedades de Superfície , Testes de Toxicidade
10.
Angew Chem Int Ed Engl ; 53(17): 4418-22, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24644126

RESUMO

Omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that control the crystallinity of the resulting polymer chains, a broad range of optical and mechanical properties of the fluorogel can be achieved. After infusing with fluorinated lubricants, the fluorogels showed excellent resistance to wetting by various liquids and anti-biofouling behavior, while maintaining cytocompatiblity.

11.
Nano Lett ; 13(4): 1793-9, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23464578

RESUMO

Lubricant-infused textured solid substrates are gaining remarkable interest as a new class of omni-repellent nonfouling materials and surface coatings. We investigated the effect of the length scale and hierarchy of the surface topography of the underlying substrates on their ability to retain the lubricant under high shear conditions, which is important for maintaining nonwetting properties under application-relevant conditions. By comparing the lubricant loss, contact angle hysteresis, and sliding angles for water and ethanol droplets on flat, microscale, nanoscale, and hierarchically textured surfaces subjected to various spinning rates (from 100 to 10,000 rpm), we show that lubricant-infused textured surfaces with uniform nanofeatures provide the most shear-tolerant liquid-repellent behavior, unlike lotus leaf-inspired superhydrophobic surfaces, which generally favor hierarchical structures for improved pressure stability and low contact angle hysteresis. On the basis of these findings, we present generalized, low-cost, and scalable methods to manufacture uniform or regionally patterned nanotextured coatings on arbitrary materials and complex shapes. After functionalization and lubrication, these coatings show robust, shear-tolerant omniphobic behavior, transparency, and nonfouling properties against highly contaminating media.


Assuntos
Lubrificantes/química , Propriedades de Superfície , Água/química , Molhabilidade , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Pressão
12.
Phys Chem Chem Phys ; 15(2): 581-5, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23183624

RESUMO

Ice repellent coatings have been studied and keenly sought after for many years, where any advances in the durability of such coatings will result in huge energy savings across many fields. Progress in creating anti-ice and anti-frost surfaces has been particularly rapid since the discovery and development of slippery, liquid infused porous surfaces (SLIPS). Here we use SLIPS-coated differential scanning calorimeter (DSC) pans to investigate the effects of the surface modification on the nucleation of supercooled water. This investigation is inherently different from previous studies which looked at the adhesion of ice to SLIPS surfaces, or the formation of ice under high humidity conditions. Given the stochastic nature of nucleation of ice from supercooled water, multiple runs on the same sample are needed to determine if a given surface coating has a real and statistically significant effect on the nucleation temperature. We have cycled supercooling to freezing and then thawing of deionized water in hydrophilic (untreated aluminum), hydrophobic, superhydrophobic, and SLIPS-treated DSC pans multiple times to determine the effects of surface treatment on the nucleation and subsequent growth of ice. We find that SLIPS coatings lower the nucleation temperature of supercooled water in contact with statistical significance and show no deterioration or change in the coating performance even after 150 freeze-thaw cycles.


Assuntos
Varredura Diferencial de Calorimetria/instrumentação , Gelo/análise , Cristalização , Desenho de Equipamento , Congelamento , Porosidade , Propriedades de Superfície
13.
ACS Nano ; 6(8): 6569-77, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22680067

RESUMO

Ice-repellent coatings can have significant impact on global energy savings and improving safety in many infrastructures, transportation, and cooling systems. Recent efforts for developing ice-phobic surfaces have been mostly devoted to utilizing lotus-leaf-inspired superhydrophobic surfaces, yet these surfaces fail in high-humidity conditions due to water condensation and frost formation and even lead to increased ice adhesion due to a large surface area. We report a radically different type of ice-repellent material based on slippery, liquid-infused porous surfaces (SLIPS), where a stable, ultrasmooth, low-hysteresis lubricant overlayer is maintained by infusing a water-immiscible liquid into a nanostructured surface chemically functionalized to have a high affinity to the infiltrated liquid and lock it in place. We develop a direct fabrication method of SLIPS on industrially relevant metals, particularly aluminum, one of the most widely used lightweight structural materials. We demonstrate that SLIPS-coated Al surfaces not only suppress ice/frost accretion by effectively removing condensed moisture but also exhibit at least an order of magnitude lower ice adhesion than state-of-the-art materials. On the basis of a theoretical analysis followed by extensive icing/deicing experiments, we discuss special advantages of SLIPS as ice-repellent surfaces: highly reduced sliding droplet sizes resulting from the extremely low contact angle hysteresis. We show that our surfaces remain essentially frost-free in which any conventional materials accumulate ice. These results indicate that SLIPS is a promising candidate for developing robust anti-icing materials for broad applications, such as refrigeration, aviation, roofs, wires, outdoor signs, railings, and wind turbines.


Assuntos
Alumínio/química , Cristalização/métodos , Gelo/análise , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Soluções/química , Fricção , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
14.
Nanoscale ; 3(11): 4542-53, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21984338

RESUMO

Wires and cables are essential to modern society, and opportunities exist to develop new materials with reduced resistance, mass, and/or susceptibility to fatigue. This article describes how carbon nanotubes (CNTs) offer opportunities for integration into wires and cables for both power and data transmission due to their unique physical and electronic properties. Macroscopic CNT wires and ribbons are presently shown as viable replacements for metallic conductors in lab-scale demonstrations of coaxial, USB, and Ethernet cables. In certain applications, such as the outer conductor of a coaxial cable, CNT materials may be positioned to displace metals to achieve substantial benefits (e.g. reduction in cable mass per unit length (mass/length) up to 50% in some cases). Bulk CNT materials possess several unique properties which may offer advantages over metallic conductors, such as flexure tolerance and environmental stability. Specifically, CNT wires were observed to withstand greater than 200,000 bending cycles without increasing resistivity. Additionally, CNT wires exhibit no increase in resistivity after 80 days in a corrosive environment (1 M HCl), and little change in resistivity with temperature (<1% from 170-330 K). This performance is superior to conventional metal wires and truly novel for a wiring material. However, for CNTs to serve as a full replacement for metals, the electrical conductivity of CNT materials must be improved. Recently, the conductivity of a CNT wire prepared through simultaneous densification and doping has exceeded 1.3 × 10(6) S/m. This level of conductivity brings CNTs closer to copper (5.8 × 10(7) S/m) and competitive with some metals (e.g. gold) on a mass-normalized basis. Developments in manipulation of CNT materials (e.g. type enrichment, doping, alignment, and densification) have shown progress towards this goal. In parallel with efforts to improve bulk conductivity, integration of CNT materials into cabling architectures will require development in electrical contacting. Several methods for contacting bulk CNT materials to metals are demonstrated, including mechanical crimping and ultrasonic bonding, along with a method for reducing contact resistance by tailoring the CNT-metal interface via electroless plating. Collectively, these results summarize recent progress in CNT wiring technologies and illustrate that nanoscale conductors may become a disruptive technology in cabling designs.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Redes de Comunicação de Computadores/tendências , Instalação Elétrica/tendências , Previsões , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Telecomunicações/instrumentação , Condutividade Elétrica , Desenho de Equipamento , Telecomunicações/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...