Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39324436

RESUMO

The auxin signaling molecule regulates a range of plant growth and developmental processes. The core transcriptional machinery responsible for auxin-mediated responses is conserved across all land plants. Genetic, physiological and molecular exploration in bryophyte and angiosperm model species have shown both qualitative and quantitative differences in auxin responses. Given the highly divergent ontogeny of the dominant gametophyte (bryophytes) and sporophyte (angiosperms) generations, however, it is unclear whether such differences derive from distinct phylogeny or ontogeny. Here, we address this question by comparing a range of physiological, developmental and molecular responses to auxin in both generations of the model fern Ceratopteris richardii. We find that auxin response in Ceratopteris gametophytes closely resembles that of a thalloid bryophyte, whereas the sporophyte mimics auxin response in flowering plants. This resemblance manifests both at the phenotypic and transcriptional levels. Furthermore, we show that disrupting auxin transport can lead to ectopic sporophyte induction on the gametophyte, suggesting a role for auxin in the alternation of generations. Our study thus identifies developmental phase, rather than phylogeny, as a major determinant of auxin response properties in land plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Gleiquênias/crescimento & desenvolvimento , Gleiquênias/genética , Gleiquênias/metabolismo , Filogenia , Pteridaceae/metabolismo , Pteridaceae/genética , Pteridaceae/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais , Transporte Biológico
2.
Plant Commun ; : 101039, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38988072

RESUMO

The auxin signaling molecule controls a variety of growth and developmental processes in land plants. Auxin regulates gene expression through a nuclear auxin signaling pathway (NAP) consisting of the ubiquitin ligase auxin receptor TIR1/AFB, its Aux/IAA degradation substrate, and DNA-binding ARF transcription factors. Although extensive qualitative understanding of the pathway and its interactions has been obtained, mostly by studying the flowering plant Arabidopsis thaliana, it remains unknown how these translate to quantitative system behavior in vivo, a problem that is confounded by the large NAP gene families in most species. Here, we used the minimal NAP of the liverwort Marchantia polymorpha to quantitatively map NAP protein accumulation and dynamics in vivo through the use of knockin fluorescent fusion proteins. Beyond revealing the dynamic native accumulation profile of the entire NAP protein network, we discovered that the two central ARFs, MpARF1 and MpARF2, are proteasomally degraded. This auxin-independent degradation tunes ARF protein stoichiometry to favor gene activation, thereby reprogramming auxin response during the developmental progression. Thus, quantitative analysis of the entire NAP has enabled us to identify ARF degradation and the stoichiometries of activator and repressor ARFs as a potential mechanism for controlling gemma germination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA