Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 212: 108728, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772165

RESUMO

Nitrogen (N) deficiency is one of the most prevalent nutrient deficiencies in plants, and has a significant impact on crop yields. In this work we aimed to develop and evaluate innovative strategies to mitigate N deficiency. We studied the effect of supplementing tomato plants grown under suboptimal N nutrition with chitosan microparticles (CS-MPs) during short- and long-term periods. We observed that the supplementation with CS-MPs prevented the reduction of aerial biomass and the elongation of lateral roots (LR) triggered by N deficiency in tomato plantlets. In addition, levels of nitrates, amino acids and chlorophyll, which decreased drastically upon N deficiency, were either partial or totally restored upon CS-MPs addition to N deficient media. Finally, we showed that CS-MPs treatments increased nitric oxide (NO) levels in root tips and caused the up-regulation of genes involved in N metabolism. Altogether, we suggest that CS-MPs enhance the growth and development of tomato plants under N deficiency through the induction of biochemical and transcriptional responses that lead to increased N metabolism. We propose treatments with CS-MPs as an efficient practice focused to mitigate the nutritional deficiencies in N impoverished soils.


Assuntos
Quitosana , Nitrogênio , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Quitosana/farmacologia , Nitrogênio/metabolismo , Nitrogênio/deficiência , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Clorofila/metabolismo , Óxido Nítrico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Aminoácidos/metabolismo
2.
Mar Pollut Bull ; 193: 115247, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421918

RESUMO

The occurrence of marine debris in the stomach contents of young male and female Spheniscus magellanicus stranded along the Atlantic coast of northern Argentina during its post-breeding exodus is reported for the first time. Marine debris was found in 15.5 % of 148 dead penguins, with a higher proportion of debris found in females when compared to males. A total of 81 debris items was recorded; plastic and paper each contributed with an equal number of debris whereas rubber contributed with a single item. Chemical identification performed using FTIR/ATR revealed that plastic items were largely LDPE and PA; other polymers included HDPE, PP and PS. The average length of fragmented plastic debris are in line with those reported from penguins stranded along the southern Brazilian coasts. Our study indicates that loads of ingested marine debris were roughly five times lower when compared to the estimates for the species in Brazilian beaches.


Assuntos
Spheniscidae , Animais , Feminino , Masculino , Argentina , Brasil , Plásticos , Ingestão de Alimentos
3.
Front Chem ; 10: 908386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059881

RESUMO

Pharmacological treatments of central nervous system diseases are always challenging due to the restrictions imposed by the blood-brain barrier: while some drugs can effectively cross it, many others, some antiepileptic drugs among them, display permeability issues to reach the site of action and exert their pharmacological effects. The development of last-generation therapeutic nanosystems capable of enhancing drug biodistribution has gained ground in the past few years. Lipid-based nanoparticles are promising systems aimed to improve or facilitate the passage of drugs through biological barriers, which have demonstrated their effectiveness in various therapeutic fields, without signs of associated toxicity. In the present work, nanostructured lipid carriers (NLCs) containing the antiepileptic drug phenobarbital were designed and optimized by a quality by design approach (QbD). The optimized formulation was characterized by its entrapment efficiency, particle size, polydispersity index, and Z potential. Thermal properties were analyzed by DSC and TGA, and morphology and crystal properties were analyzed by AFM, TEM, and XRD. Drug localization and possible interactions between the drug and the formulation components were evaluated using FTIR. In vitro release kinetic, cytotoxicity on non-tumoral mouse fibroblasts L929, and in vivo anticonvulsant activity in an animal model of acute seizures were studied as well. The optimized formulation resulted in spherical particles with a mean size of ca. 178 nm and 98.2% of entrapment efficiency, physically stable for more than a month. Results obtained from the physicochemical and in vitro release characterization suggested that the drug was incorporated into the lipid matrix losing its crystalline structure after the synthesis process and was then released following a slower kinetic in comparison with the conventional immediate-release formulation. The NLC was non-toxic against the selected cell line and capable of delivering the drug to the site of action in an adequate amount and time for therapeutic effects, with no appreciable neurotoxicity. Therefore, the developed system represents a promising alternative for the treatment of one of the most prevalent neurological diseases, epilepsy.

5.
J Inorg Organomet Polym Mater ; 32(4): 1473-1486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35106063

RESUMO

Novel antiviral cotton fabrics impregnated with different formulations based on Chitosan (CH), citric acid (CA), and Copper (Cu) were developed. CA was selected as a CH crosslinker agent and Cu salts as enhancers of the polymer antimicrobial activity. The characterization of the polymeric-inorganic formulations was assessed by using atomic absorption spectroscopy, X-ray diffraction, Fourier transform infrared and UV-Vis spectroscopy, as well as thermogravimetric analysis. The achieved data revealed that CuO nanoparticles were formed by means of chitosan and citric acid in the reaction media. The antiviral activity of CH-based formulations against bovine alphaherpesvirus and bovine betacoronavirus was analyzed. Cotton fabrics were impregnated with the selected formulations and the antiviral properties of such textiles were examined before and after 5 to 10 washing cycles. Herpes simplex virus type 1 was selected to analyze the antiviral activities of the functionalized cotton fabrics. The resulting impregnated textiles exhibited integrated properties of good adhesion without substantially modifying their appearance and antiviral efficacy (~ 100%), which enabling to serve as a scalable biocidal layer in protective equipment's by providing contact killing against pathogens. Thus, the results revealed a viable contribution to the design of functional-active materials based on a natural polymer such as chitosan. This proposal may be considered as a potential tool to inhibit the propagation and dissemination of enveloped viruses, including SARS-CoV-2. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10904-021-02192-x.

6.
Sci Rep ; 10(1): 20499, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235262

RESUMO

Fungal green biosynthesis of nanoparticles (NPs) is a promising eco-friendly method for mass-scale production. In the present study Ag, CuO and ZnO nanoparticles were biogenically synthetized using a cell filtrate of a strain of Trichoderma harzianum as a reducer and stabilizer agent. The structure, morphology and physicochemical properties of the NPs were characterized through transmission electron microscopy, dynamic light scattering, wide angle X-ray scattering and thermogravimetric analysis. Since nanotechnology could offer promising applications in agricultural area, we evaluated the ability of the NPs to reduce the growth of important fungal phytopathogens as Alternaria alternata, Pyricularia oryzae and Sclerotinia sclerotiorum. Silver and CuO NPs reduced significantly the mycelial growth of A. alternata and P. oryzae in a dose dependent manner. This is the first report of a multiple extracellular biosynthesis of NPs from T. harzianum and the first time that CuO and ZnO NPs were obtained from this fungus. In addition, we highlighted the rapid production of NPs, as well as, the potential of Ag and CuO for the control of phytopathogens. On the other hand, the three types of NPs could be easily and sustainably produced on a large scale with the chance of having multiple applications in biotechnological processes.


Assuntos
Antifúngicos/farmacologia , Cobre/farmacologia , Hypocreales/química , Nanopartículas Metálicas/química , Doenças das Plantas/microbiologia , Prata/farmacologia , Óxido de Zinco/farmacologia , Alternaria/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula
7.
Plant Physiol Biochem ; 143: 203-211, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31518851

RESUMO

Agrobiotechnology challenges involve the generation of new sustainable bioactives with emerging properties as plant biostimulants with reduced environment impact. We analyzed the potential use of recently developed chitosan microparticles (CS-MP) as growth promoters of tomato which constitutes one of the most consumed vegetable crops worldwide. Treatments of tomato seeds with CS-MP improved germination and vigor index. In addition, CS-MP sustained application triggered an improvement in root and shoot biomass reinforcing tomato performance before transplanting. The level of reactive oxygen species (ROS), antioxidant enzyme activities and defense protein markers were modulated by CS-MP treatment in tomato plantlets. Analyses of ARR5:GUS and DR5:GUS transgenic reporter tomato lines highlighted the participation of cytokinin and auxin signaling pathways during tomato root promotion mediated by CS-MP. Our findings claim a high commercial potential of CS-MP to be incorporated as a sustainable input for tomato production.


Assuntos
Quitosana/química , Quitosana/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Biomassa , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
8.
J Agric Food Chem ; 67(25): 6911-6920, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194542

RESUMO

Improving the root system architecture (RSA) under adverse environmental conditions by using biostimulants is emerging as a new way to boost crop productivity. Recently, we have reported the characterization of novel chitosan-based microparticles (CS-MPs) with promising biological properties as rooting agents in lettuce. In this work, we demonstrated that in contrast to bulk chitosan (CS), which exerts root growth inhibition, CS-MPs promoted root growth and development from 1 to 10 µg mL-1 without cytotoxicity effects at higher doses in Arabidopsis and lettuce seedlings. In addition, we studied the mechanistic mode of action of CS-MPs in the development of early RSA in the Arabidopsis model. CS-MPs unchained accurate and sustained spatio-temporal activation of the nuclear auxin signaling pathway. Our findings validated a promising scenario for the application of CS-MPs in the modulation of RSA to respond to changing soil environments and improve crop performance.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Quitosana/química , Quitosana/farmacologia , Ácidos Indolacéticos/farmacologia , Lactuca/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Lactuca/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Carbohydr Polym ; 200: 321-331, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30177172

RESUMO

Shrimp fishing industry wastes are still a main problem with high environmental impact worldwide. In this study, chitosan with ultra-high molecular weight and deacetylation degree ≥85% was obtained from shrimp fishing industry waste from Argentinean Patagonia. Chitosan based microparticles capable to entrap salicylic acid, a phytohormone known to play major role in the regulation of plant defense response against various pathogens, were prepared using TPP as crosslinker. Unloaded microparticles and microparticles loading several salicylic acid amount were fully characterized exhibiting a size between 1.57 µm and 2.45 µm. Furthermore, a good PDI, entrappment efficiencies from 59% to 98% and salicylic acid sustained release over 24 h were achieved. Chitosan based microparticles were non toxic in most of the doses applied in lettuce seedlings. Instead, microparticles can positively modulate plant growth and have the potential to improve plant defense responses. In particular salicylic acid loaded microparticles effect was very promising for its application as activators of salicylic acid dependent plant defense responses in lettuce as a model of horticultural plant species.

10.
Mater Sci Eng C Mater Biol Appl ; 32(6): 1490-5, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24364950

RESUMO

Hydroxyapatite (HA) reinforced Poly(vinyl alcohol) (PVA) hydrogel composites has been proposed as a promising biomaterial to replace diseased or damaged articular cartilage. Here, PVA/in-situ produced HA hydrogels with 0, 3 and 7.5 wt.% of HA content were obtained by freezing/thawing technique. Thermal, structural and mechanical characterizations were carried out. SEM micrographs revealed that HA was homogeneously distributed in PVA until 3 wt.% whereas partial agglomeration was observed for higher contents (7.5 wt.%). No significant changes were observed in the glass transition temperature (the average value was near to 78 °C ± 3 °C), the melting point and structural water content whereas the gel fraction slightly increased (from 0.72 to 0.78) with the increase the content of HA. The absorbed water decreased (from 85.7% to 80.5%) as a function of HA content The stress-strain curves were really different in hydrated and non-hydrated conditions, changing from non-linear, in presence of water, to linear behavior in a dried state, being in the first case consistent with the articular cartilage . The lowest friction coefficient was obtained for samples with 3 wt. % HA (0.067 ± 0.049), which is, together with a high resistance (721 ± 25 kPa), an important property for materials that will be used as articular replacement. The results indicate that this hydrogel could be used, after other studies, as articular cartilage replacement.


Assuntos
Cartilagem Articular/fisiologia , Hidrogéis/química , Álcool de Polivinil/química , Materiais Biocompatíveis/química , Durapatita/química , Teste de Materiais/métodos , Propriedades de Superfície , Temperatura de Transição , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...