Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667264

RESUMO

In recent years, polyelectrolytes have been successfully used as an alternative to non-collagenous proteins to promote interfibrillar biomineralization, to reproduce the spatial intercalation of mineral phases among collagen fibrils, and to design bioinspired scaffolds for hard tissue regeneration. Herein, hybrid nanofibers were fabricated via electrospinning, by using a mixture of Poly ɛ-caprolactone (PCL) and cationic cellulose derivatives, i.e., cellulose-bearing imidazolium tosylate (CIMD). The obtained fibers were self-assembled with Sodium Alginate (SA) by polyelectrolyte interactions with CIMD onto the fiber surface and, then, treated with simulated body fluid (SBF) to promote the precipitation of calcium phosphate (CaP) deposits. FTIR analysis confirmed the presence of SA and CaP, while SEM equipped with EDX analysis mapped the calcium phosphate constituent elements, estimating an average Ca/P ratio of about 1.33-falling in the range of biological apatites. Moreover, in vitro studies have confirmed the good response of mesenchymal cells (hMSCs) on biomineralized samples, since day 3, with a significant improvement in the presence of SA, due to the interaction of SA with CaP deposits. More interestingly, after a decay of metabolic activity on day 7, a relevant increase in cell proliferation can be recognized, in agreement with the beginning of the differentiation phase, confirmed by ALP results. Antibacterial tests performed by using different bacteria populations confirmed that nanofibers with an SA-CIMD complex show an optimal inhibitory response against S. mutans, S. aureus, and E. coli, with no significant decay due to the effect of CaP, in comparison with non-biomineralized controls. All these data suggest a promising use of these biomineralized fibers as bioinspired membranes with efficient antimicrobial and osteoconductive cues suitable to support bone healing/regeneration.

2.
Sci Rep ; 14(1): 8075, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580685

RESUMO

During the preparation of fixed prosthesis (including individual bridges and crowns) it is important to select the materials that have the best features and properties to predict a successful clinical treatment. The objective of this study was to determine if the chemical and structural characteristics could cause to increase the fracture resistance, we used four bis-acryl resins Luxatemp, Protemp, Structur and Telio. Three-points bending by Flexural test were performed in ten bars and they were carried out to compare with Anova test. In addition, the bis-acryl resins were analyzed by scanning electron microscopy, to analyze microstructure and morphology and the molecular structure were performed by Infrared Spectroscopy through Attenuated Total Reflectance. A higher flexural strength was found in Luxatemp and Structur with, no significant differences between this study groups. Regarding Protemp and Telio, these study groups showed a lower flexural strength when were compared with Luxatemp and Structur. These results corroborate SEM and ATR analysis because Luxatemp sample showed a regular size particle on the surface and chemically presents a long cross-linkage polymer chain. The presence of CO3, SiO2 and N-H groups as a fillers particle interacting with OH groups cause a higher flexural strength compared with another groups.

4.
Stem Cell Res Ther ; 14(1): 312, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904232

RESUMO

BACKGROUND: Thymic epithelial cells (TECs) are responsible for shaping the repertoires of T cells, where their postnatal regeneration depends on a subset of clonogenic TECs. Despite the implications for regenerative medicine, their cultivation and expansion remain challenging. Primary explant cell culture is a technique that allows the seeding and expansion of difficult-to-culture cells. Here, we report a reliable and simple culture system to obtain functional TECs and thymic interstitial cells (TICs). METHODS: To establish primary thymic explants, we harvested 1 mm cleaned fragments of thymus from 5-week-old C57/BL6 mice. Tissue fragments of a complete thymic lobe were placed in the center of a Petri dish with 1 mL of DMEM/F-12 medium supplemented with 20% fetal bovine serum (FBS) and 1% penicillin‒streptomycin. To compare, thymic explants were also cultivated by using serum-free DMEM/F-12 medium supplemented with 10% KnockOut™. RESULTS: We obtained high numbers of functional clonogenic TECs and TICs from primary thymic explants cultivated with DMEM/F-12 with 20% FBS. These cells exhibited a highly proliferative and migration profile and were able to constitute thymospheres. Furthermore, all the subtypes of medullary TECs were identified in this system. They express functional markers to shape T-cell and type 2 innate lymphoid cells repertoires, such as Aire, IL25, CCL21 and CD80. Finally, we also found that ≥ 70% of lineage negative TICs expressed high amounts of Aire and IL25. CONCLUSION: Thymic explants are an efficient method to obtain functional clonogenic TECs, all mTEC subsets and different TICs Aire+IL25+ with high regenerative capacity.


Assuntos
Imunidade Inata , Linfócitos , Camundongos , Animais , Timo/metabolismo , Células Epiteliais/metabolismo , Linfócitos T , Diferenciação Celular
5.
Odovtos (En linea) ; 25(1)abr. 2023.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1422195

RESUMO

The present study aimed to compare the adhesion and proliferation of human periodontal ligament fibroblasts (hPDL) in transverse sections of the teeth sealed with two different obturation techniques, BioRoot RCS/hydraulic obturation (HO) and AH-Plus/continuous-wave condensation (CWC). The techniques were tested using an in vitro model to simulate the interaction between periodontal tissues and the materials. The root canals were instrumented and sterilized. A total of 15 samples were obturated with BioRoot RCS/HO and 15 samples with AH-Plus/CWC. Then, roots were sectioned to obtain obturated teeth slices, and hPDL cells were seeded onto the root slices. The results were obtained at intervals of 4 and 24h for cell adhesion; and at 3,7,14, and 21 days for cell proliferation. Empty cell culture plates were use as controls. The cell adhesion was increased at 4 and 24h for both groups, with an increased response observed in the BioRoot RCS/HO group (p<0.05). The difference in cell proliferation was also found between experimental groups. After 14 days of culture, BioRoot RCS/HO group showed an increase response than control and AH-Plus/CWC groups (p<0.05), and after 21 days both groups behaved better than control group, with an increased response observed in the BioRoot RCS/HO group. This study demonstrated that both root canal sealers allow the attach and growth of periodontal ligament fibroblasts, with an increased biological response in the BioRoot RCS/HO group.


El presente estudio se enfocó en comparar la adhesión y proliferación de fibroblastos de ligamento periodontal humano (hPDL) en secciones transversales de raíces previamente obturadas con dos técnicas de obturación diferentes: obturación hidráulica empleando cono único de gutapercha y BioRoot RCS como sellador (HO), y obturación de condensación de onda continua y AH-Plus como sellador (CWC). Los selladores se usaron en un modelo in vitro que simula la interacción entre los tejidos periodontales y los materiales de obturación. Los conductos radiculares fueron instrumentados, esterilizados y obturados. La muestra se compuso de un total de 15 raíces con la técnica BioRoot RCS/HO y 15 raíces con la técnica AH-Plus/CWC. Las células de hPDL fueron sembradas en condiciones estándar de cultivo sobre las raíces seccionadas. Los resultados fueron obtenidos a intervalos de 4 y 24h para adhesión celular, y a los 3,5,7,14 y 21 días de cultivo para proliferación celular. La adhesión celular a las 4 y 24 horas mostró ser diferente para ambas técnicas en comparación con el grupo control, siendo más importante en el grupo BioRoot RCS/HO. La diferencia en la proliferación entre grupos se observó a los 14 días de cultivo, únicamente para el grupo BioRoot RCS/HO; Sin embargo para el día 21 ambas técnicas mostraron mayor proliferación celular que el grupo control, con mejor respuesta para el grupo BioRoot RCS/HO. Este estudio ha demostrado que ambos selladores de conductos permiten la adhesión y crecimiento de fibroblastos de ligamento periodontal, siendo el grupo BioRoot RCS/HO el que mostró mayor biocompatibilidad.


Assuntos
Humanos , Selantes de Fossas e Fissuras/análise , Teste de Materiais , Ligamento Periodontal , Receptores de Hidrocarboneto Arílico
6.
Materials (Basel) ; 14(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576456

RESUMO

In recent years, several studies have validated the use of piezoelectric materials for in situ biological stimulation, opening new interesting insights for bio-electric therapies. In this work, we investigate the morphological properties of polyvinylidene fluoride (PVDF) in the form of microstructured films after temperature-driven phase transition. The work aims to investigate the correlations between morphology at micrometric (i.e., spherulite size) and sub-micrometric (i.e., phase crystallinity) scale and in vitro cell response to validate their use as bio-functional interfaces for cellular studies. Morphological analyses (SEM, AFM) enabled evidence of the peculiar spherulite-like structure and the dependence of surface properties (i.e., intra-/interdomain roughness) upon process conditions (i.e., temperature). Meanwhile, chemical (i.e., FTIR) and thermal (i.e., DSC) analyses highlighted an influence of casting temperature and polymer solution on apolar to polar phases transition, thus affecting in vitro cell response. Accordingly, in vitro tests confirmed the relationship between micro/sub-microstructural properties and hMSC response in terms of adhesion and viability, thus suggesting a promising use of PVDF films to model, in perspective, in vitro functionalities of cells under electrical stimuli upon mechanical solicitation.

7.
Materials (Basel) ; 13(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331435

RESUMO

Biofabrication and maturation of bone constructs is a long-term task that requires a high degree of specialization. This specialization falls onto the hierarchy complexity of the bone tissue that limits the transfer of this technology to the clinic. This work studied the effects of the short-term cryopreservation on biofabricated osteoblast-containing structures, with the final aim to make them steadily available in biobanks. The biological responses studied include the osteoblast post-thawing metabolic activity and the recovery of the osteoblastic function of 3D-bioprinted osteoblastic structures and beta tricalcium phosphate (ß-TCP) scaffolds infiltrated with osteoblasts encapsulated in a hydrogel. The obtained structures were cryopreserved at -80 °C for 7 days using dimethyl sulfoxide (DMSO) as cryoprotectant additive. After thawing the structures were cultured up to 14 days. The results revealed fundamental biological aspects for the successful cryopreservation of osteoblast constructs. In summary, immature osteoblasts take longer to recover than mature osteoblasts. The pre-cryopreservation culture period had an important effect on the metabolic activity and function maintain, faster recovering normal values when cryopreserved after longer-term culture (7 days). The use of ß-TCP scaffolds further improved the osteoblast survival after cryopreservation, resulting in similar levels of alkaline phosphatase activity in comparison with the non-preserved structures. These results contribute to the understanding of the biology of cryopreserved osteoblast constructs, approaching biofabrication to the clinical practice.

8.
Odovtos (En línea) ; 21(3): 77-88, Sep.-Dec. 2019. graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1091494

RESUMO

ABSTRACT In recent years, tissue engineering has evolved considerably, due to the problems in the biomedical area concerning tissue regeneration therapies. Currently, work has been focused on the synthesis and physicochemical characterization of poly lactic acid scaffolds, a synthetic polyester that has been extensively study for its excellent biocompatibility and biodegradability. Moreover, sterilization strategies of scaffold are a crucial step for its application in tissue regeneration, however, the sterilization process have to maintain the structural and biochemical properties of the scaffold. Therefore, it is very important to carry out studies on the sterilization methods of the sample's material, since translational medicine is intended for in vivo applications. The aim of the present study was designed to analyze the effects of different sterilization techniques, i.e. ethylene oxide (ETO), gamma radiation (GR) and hydrogen peroxide- based plasma (H2O2) in biodegradable PLA scaffolds, and to determine the best sterilization technique to render a sterile product with minimal degradation and deformation, and good tissue response. Analysis of surface morphology showed that ETO and GR modified the PLA scaffolds without any change in its chemical composition. Moreover, the histological response showed that the scaffolds are biocompatible and those sterilized by GR showed a more severe inflammatory response, accompanied with the presence of giant foreign body cells. In conclusion, the results show that among sterilization techniques used in the preset study, the best results were observed with H2O2 sterilization, since it did not significantly modify the surface structure of the PLA fibers and their in vivo response did not cause an unfavorable tissue reaction.


RESUMEN En los últimos años, la ingeniería de tejidos ha evolucionado considerablemente, debido a las incógnitas en las terapias de regeneración en el área biomédica. Actualmente, se ha trabajado en la síntesis y caracterización fisicoquímica de andamios de poliácido láctico, el cual es un polímero sintético que se ha estudiado para aplicaciones en ingeniería de tejidos, debido a su biocompatibilidad y biodegradabilidad. El proceso de esterilización es un paso crucial en la aplicación de andamios en terapias de regeneración, sin embargo, la técnica de esterilización debe mantener las propiedades estructurales y bioquímicas del andamio. Por lo tanto, es muy importante realizar estudios sobre los métodos de esterilización de dichos andamios, ya que la medicina traslacional está diseñada para aplicaciones in vivo. El objetivo del presente estudio fue analizar los efectos de diferentes técnicas de esterilización como óxido de etileno (ETO), radiación gamma (GR) y plasma a base de peróxido de hidrógeno (H2O2) en andamios biodegradables de PLA, y determinar la mejor técnica de esterilización con mínima degradación y deformación, así como una respuesta tisular favorable. La estructura de la superficie de los andamios de PLA se modificó principalmente con las técnicas de óxido de etileno y radiación gamma, sin embargo, ninguna técnica modificó su composición química. Con la respuesta histológica se demostró que los andamios de PLA son biocompatibles y que los esterilizados por radiación gamma desencadenan una mayor respuesta inflamatoria y la formación de células gigantes de cuerpo extraño. En conclusión, los resultados muestran que las técnicas de esterilización utilizadas pueden modificar la morfología del andamio, sin embargo; los mejores resultados se observaron con la esterilización por plasma a base de peróxido de hidrógeno, ya que no modificó significativamente la estructura de la superficie de las fibras de PLA y su respuesta in vivo no provocó una reacción desfavorable en el tejido.


Assuntos
Materiais Biomédicos e Odontológicos , Esterilização , Óxido de Etileno/análise , Alicerces Teciduais , Hexaclorocicloexano , Compômeros
9.
J Biomed Mater Res A ; 107(8): 1803-1813, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31004452

RESUMO

The use of bioactive proteins such as keratin has been successfully explored to improve the biological interface of scaffolds with cells during the tissue regeneration. In this work, it is optimized the fabrication of nanofibers combining wool keratin extracted by sulfitolysis, with polycaprolactone (PCL) in order to design bicomponent fibrous matrices able to exert a self-adapting pattern of signals-morphological, chemical, or physical-confined at the single fiber level, to influence cell and bacteria interactions. It is demonstrated that the blending of highly polydisperse keratin with PCL (50:50) improves the stability of the electrospinning process, promoting the formation of nanofibers-144.1 ± 43.9 nm-without the formation of defects (i.e., beads, ribbons) typically recognized in the fabrication of keratin ones. Moreover, keratin drastically increases the fiber hydrophilicity-compared with PCL fiber alone-thus improving the hMSC adhesion and in vitro proliferation until 14 days. Moreover, the growth of bacterial strains (i.e., Escherichia coli and Staphylococcus aureus) seems to be not specifically inhibited by the contribution of keratin, so that the integration of further selected compounds (i.e., metal ions) is suggested to more efficiently fight against bacteria resistance, to make them suitable for the regeneration of different interfaces and soft tissues (i.e., skin and cornea). © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1803-1813, 2019.


Assuntos
Queratinas/química , Nanofibras/química , Alicerces Teciduais/química , Animais , Escherichia coli/efeitos dos fármacos , Humanos , Queratinas/farmacologia , Queratinas/ultraestrutura , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanofibras/ultraestrutura , Poliésteres/química , Staphylococcus aureus/efeitos dos fármacos
10.
Nanotechnology ; 28(50): 505103, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29058684

RESUMO

The main limitation of conventional antibiotic therapies concerns the low efficacy to fight bacteria attacks during long treatment times. In this context, the integrated use of electrofluidodynamics (EFDs)-basically electrospinning and electrospraying-may represent an interesting route for designing nanostructured platforms with controlled release to prevent the formation of bacterial biofilms in oral implant sites. They allow for the deposition of nanofibres and nanoparticles by different modes-i.e. sequential, simultaneous-for the fabrication of more efficacious systems in terms of degradation protection, pharmacokinetic control and drug distribution to the surrounding tissues. Herein, we will investigate EFDs processing modes and conditions to decorate polycaprolactone nanofibres surfaces by chitosan nano-reservoirs for the administration of Amoxicillin Trihydrate as an innovative antibacterial treatment of the periodontal pocket.


Assuntos
Amoxicilina/farmacologia , Antibacterianos/farmacologia , Quitosana/química , Portadores de Fármacos , Poliésteres/química , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Aggregatibacter actinomycetemcomitans/crescimento & desenvolvimento , Amoxicilina/metabolismo , Antibacterianos/metabolismo , Preparações de Ação Retardada/síntese química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Cinética , Testes de Sensibilidade Microbiana , Nanofibras/química , Nanofibras/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
11.
J Tissue Eng Regen Med ; 8(4): 291-303, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22730225

RESUMO

In this work, we focus on the in vitro and in vivo response of composite scaffolds obtained by incorporating Mg,CO3 -doped hydroxyapatite (HA) particles in poly(ε-caprolactone) (PCL) porous matrices. After a complete analysis of chemical and physical properties of synthesized particles (i.e. SEM/EDS, DSC, XRD and FTIR), we demonstrate that the Mg,CO3 doping influences the surface wettability with implications upon cell-material interaction and new bone formation mechanisms. In particular, ion substitution in apatite crystals positively influences the early in vitro cellular response of human mesenchymal stem cells (hMSCs), i.e. adhesion and proliferation, and promotes an extensive mineralization of the scaffold in osteogenic medium, thus conforming to a more faithful reproduction of the native bone environment than undoped HA particles, used as control in PCL matrices. Furthermore, we demonstrate that Mg,CO3 -doped HA in PCL scaffolds support the in vivo cellular response by inducing neo-bone formation as early as 2 months post-implantation, and abundant mature bone tissue at the sixth month, with a lamellar structure and completely formed bone marrow. Together, these results indicate that Mg(2+) and CO3 (2-) ion substitution in HA particles enhances the scaffold properties, providing the right chemical signals to combine with morphological requirements (i.e. pore size, shape and interconnectivity) to drive osteogenic response in scaffold-aided bone regeneration.


Assuntos
Desenvolvimento Ósseo , Calcificação Fisiológica , Durapatita/química , Magnésio/química , Poliésteres/química , Alicerces Teciduais , Animais , Varredura Diferencial de Calorimetria , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Microscopia Eletrônica de Varredura , Porosidade , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
12.
Methods Mol Biol ; 1058: 109-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23700278

RESUMO

Human mesenchymal stem cells (hMSC) currently represent a major cell resource in the research laboratory, to study differentiated-cell behavior in 3D scaffolds during the regeneration processes. Adhesion and differentiation of stem cells to a specific phenotype are achieved by culturing them in apposite culture media under precise conditions. Meanwhile, hydrolytic degradation of polymeric scaffolds allows implanted cells to synthesize their own extracellular matrix in situ after implantation so that the degeneration of the foreign scaffold is temporally matched by creation of the new innate one. In this context, structural properties and biochemical signals may concur to influence the cell response to the environmental stimuli during the culture. So, it becomes mandatory to introduce robust protocols to treat hMSC alone-before the culture-and in combination with the scaffolds for the next investigation by scanning electron microscopy. Here, we describe the protocols used to manage hMSC before and during the culture in order to obtain more detailed information on cell mechanisms mediated by polymeric scaffolds.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Nanofibras , Criopreservação/métodos , Meios de Cultura , Humanos , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Nanofibras/ultraestrutura , Alicerces Teciduais/química
13.
J Biomed Mater Res A ; 100(11): 3008-19, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22700476

RESUMO

The implementation of bio-inspired strategies in developing scaffolds for the reconstruction of oral, craniofacial and bone skeletal tissues after injury or resection remains a challenge. Currently, advanced scaffolds comprising nanofibers endowed with biochemical/biophysical signaling capability offer great advantages in bone regeneration, because of their faithful mimesis of the characteristic size scales encountered in the fibrous network of the native extracellular matrix (ECM). In this study, we investigate the biological potential of nanofibers made of polycaprolactone and gelatin on guiding the regenerative mechanisms of bone. Contact angle measurements and environmental SEM investigations indicate a weak linkage of gelatin molecules to PCL chains, facilitating an efficient adhesion signal to cells up to 3 days of culture. In vitro studies performed on human mesenchymal stem cells (hMSC) until 3 weeks in culture medium with osteogenic supplementation, clearly showing the effectiveness of PCL/Gelatin electrospun scaffolds in promoting bone osteogenesis and mineralization. The increase of alkaline phosphatase activity (ALP) and gene expression of bone-related molecules (bone sialoprotein, osteopontin and osteocalcin), indicated by immunodetection and upregulation level of mRNA, confirm that proposed nanofibers promote the osteogenic differentiation of hMSC, preferentially in osteogenic medium. Moreover, the evidence of newly formed collagen fibers synthesis by SIRCOL and their mineralization evaluated by Alizarin Red staining and EDS mapping of the elements Ca, P and Mg corroborate the idea that native osteoid matrix is ultimately deposited. All these data suggest that PCL and gelatin electrospun nanofibers have great potential as osteogenesis promoting scaffolds for successful application in bone surgery.


Assuntos
Gelatina/metabolismo , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Osteogênese , Poliésteres/metabolismo , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Calcificação Fisiológica , Diferenciação Celular , Células Cultivadas , Gelatina/química , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Poliésteres/química , Engenharia Tecidual
14.
J R Soc Interface ; 9(74): 2201-12, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22399788

RESUMO

The development of composite scaffolds with well-organized architecture and multi-scale properties (i.e. porosity, degradation) represents a valid approach for achieving a tissue-engineered construct capable of reproducing the medium- and long-term in vitro behaviour of hierarchically complex tissues such as spongy bone. To date, the implementation of scaffold design strategies able to summarize optimal scaffold architecture as well as intrinsic mechanical, chemical and fluid transport properties still remains a challenging issue. In this study, poly ε-caprolactone/polylactid acid (PCL/PLA) tubular devices (fibres of PLA in a PCL matrix) obtained by phase inversion/salt leaching and filament winding techniques were proposed as cell instructive scaffold for bone osteogenesis. Continuous fibres embedded in the polymeric matrix drastically improved the mechanical response as confirmed by compression elastic moduli, which vary from 0.214 ± 0.065 to 1.174 ± 0.143 MPa depending on the relative fibre/matrix and polymer/solvent ratios. Moreover, computational fluid dynamic simulations demonstrated the ability of composite structure to transfer hydrodynamic forces during in vitro culture, thus indicating the optimal flow rate conditions that, case by case, enables specific cellular events-i.e. osteoblast differentiation from human mesenchymal stem cells (hMSCs), mineralization, etc. Hence, we demonstrate that the hMSC differentiation preferentially occurs in the case of higher perfusion rates-over 0.05 ml min(-1)-as confirmed by the expression of alkaline phosphate and osteocalcin markers. In particular, the highest osteopontin values and a massive mineral phase precipitation of bone-like phases detected in the case of intermediate flow rates (i.e. 0.05 ml min(-1)) allows us to identify the best condition to stimulate the bone extracellular matrix in-growth, in agreement with the hydrodynamic model prediction. All these results concur to prove the succesful use of tubular composite as temporary device for long bone treatment.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Osteoblastos/metabolismo , Osteogênese , Alicerces Teciduais/química , Linhagem Celular , Simulação por Computador , Humanos , Ácido Láctico/química , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Poliésteres/química , Polímeros/química
15.
Macromol Biosci ; 11(12): 1694-705, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-22052674

RESUMO

The effect of solvent permittivity on the fibre morphology of PCL electrospun membranes for tissue engineering applications is studied. Morphological results indicate that polar solvents with higher permittivity are able to promote the formation of sub-micrometric fibres, while apolar solvents yield microfibres with an average fibre diameter of 2.86 ± 0.31 µm. Polymer/solvent interactions and electrospinning process parameters influence the mechanism of fibre and bead formation. It is shown that the dielectric properties of solvents influence the fibre size scale and crystallinity and directly contribute to the biological response of stem cells. Solvent permittivity is a key factor in controlling the morphological and physical properties of electrospun fibre meshes.


Assuntos
Nanofibras/análise , Poliésteres/síntese química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Nanofibras/química , Nanofibras/ultraestrutura , Poliésteres/análise , Poliésteres/farmacologia , Solventes , Espectrofotometria Infravermelho , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...