Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 267, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770940

RESUMO

BACKGROUND: Adipose tissue has gained attention due to its potential paracrine role. Periprostatic adipose tissue surrounds the prostate and the prostatic urethra, and it is an essential player in prostate cancer progression. Since obesity is directly related to human tumor progression, and adipose tissue depots are one of the significant components of the tumor microenvironment, the molecular mediators of the communication between adipocytes and epithelial cells are in the spotlight. Although periprostatic white adipose tissue contributes to prostate cancer progression, brown adipose tissue (BAT), which has beneficial effects in metabolic pathologies, has been scarcely investigated concerning cancer progression. Given that adipose tissue is a target of androgen signaling, the actual role of androgen removal on the periprostatic adipose tissue was the aim of this work. METHODS: Surgical castration of the transgenic adenocarcinoma of the mouse prostate (TRAMP) was employed. By histology examination and software analysis, WAT and BAT tissue was quantified. 3T3-like adipocytes were used to study the role of Casodex® in modifying adipocyte differentiation and to investigate the function of the secretome of adipocytes on the proliferation of androgen-dependent and independent prostate cancer cells. Finally, the role of cell communication was assayed by TRAMP-C1 xenograft implanted in the presence of 3T3-like adipocytes. RESULTS: Androgen removal increases brown/beige adipose tissue in the fat immediately surrounding the prostate glands of TRAMP mice, concomitant with an adjustment of the metabolism. Castration increases body temperature, respiratory exchange rate, and energy expenditure. Also, in vitro, it is described that blocking androgen signaling by Casodex® increases the uncoupling protein 1 (UCP1) marker in 3T3-like adipocytes. Finally, the effect of brown/beige adipocyte secretome was studied on the proliferation of prostate cancer cells in vivo and in vitro. The secretome of brown/beige adipocytes reduces the proliferation of prostate cancer cells mediated partly by the secretion of extracellular vesicles. CONCLUSIONS: Consequently, we concluded that hampering androgen signaling plays a crucial role in the browning of the periprostatic adipose tissue. Also, the presence of brown adipocytes exhibits the opposite effect to that of white adipocytes in vitro regulating processes that govern the mechanisms of cell proliferation of prostate cancer cells. And finally, promoting the browning of adipose tissue in the periprostatic adipose tissue might be a way to handle prostate cancer cell progression. Video Abstract.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Androgênios , Microambiente Tumoral , Castração
2.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074045

RESUMO

In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Neoplasias da Próstata/metabolismo , Microambiente Tumoral , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Citocinas/metabolismo , Progressão da Doença , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Masculino , Metástase Neoplásica , Neoplasias da Próstata/patologia
3.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952224

RESUMO

Neuroindole melatonin, a hormone synthesized during the night mainly-but not exclusively-by the pineal gland of all vertebrates, functions as an adapting signal to the light-dark cycle. Its antioxidant, neuroprotective, anti-inflammatory, and antitumor properties are all well-known and widely reported. Melanoma is one of the most common carcinomas among developed countries and a type of tumor particularly difficult to fight back in medium/advanced stages. In contrast to other types of cancer, influence of melatonin on melanoma has been scarcely investigated. Thus, we have chosen the murine melanoma model B16-F10 cell line to study antiproliferative and antitumoral actions of melatonin. For this purpose, we combined both, cell culture and in vivo models. Melatonin reduced either, growth rate or migration of B16-F10 cells. Furthermore, melanin synthesis was altered by melatonin, promoting its synthesis. Melatonin also induced a G2/M cell cycle arrest and altered the cytoskeletal organization. To corroborate these results, we tested the effect of melatonin in the in vivo model of B16-F10 cell injection in the tail vein, which causes numerous lung metastases. Two different strategies of melatonin administration were used, namely, in drinking water, or daily intraperitoneal injection. However, contrary to what occurred in cell culture, no differences were observed between control and melatonin treated groups. Results obtained led us to conclude that melatonin exerts an antiproliferative and anti-migrating effect on this melanoma model by interfering with the cytoskeleton organization, but this pharmacological effect cannot be translated in vivo as the indole did not prevent metastasis in the murine model, suggesting that further insights into the effects of the indole in melanoma cells should be approached to understand this apparent paradox.


Assuntos
Proliferação de Células/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Melanoma Experimental/metabolismo , Melatonina/farmacologia , Actinas/genética , Actinas/metabolismo , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Catalase/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Citoesqueleto/genética , Citoesqueleto/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Melaninas/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/patologia , Melatonina/administração & dosagem , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismo , Tiorredoxinas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
4.
Molecules ; 23(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103453

RESUMO

Melatonin, N-acetyl-5-methoxytryptamine, is an indole mainly synthesized from tryptophan in the pineal gland and secreted exclusively during the night in all the animals reported to date. While the pineal gland is the major source responsible for this night rise, it is not at all the exclusive production site and many other tissues and organs produce melatonin as well. Likewise, melatonin is not restricted to vertebrates, as its presence has been reported in almost all the phyla from protozoa to mammals. Melatonin displays a large set of functions including adaptation to light: dark cycles, free radical scavenging ability, antioxidant enzyme modulation, immunomodulatory actions or differentiation⁻proliferation regulatory effects, among others. However, in addition to those important functions, this evolutionary 'ancient' molecule still hides further tools with important cellular implications. The major goal of the present review is to discuss the data and experiments that have addressed the relationship between the indole and glucose. Classically, the pineal gland and a pinealectomy were associated with glucose homeostasis even before melatonin was chemically isolated. Numerous reports have provided the molecular components underlying the regulatory actions of melatonin on insulin secretion in pancreatic beta-cells, mainly involving membrane receptors MTNR1A/B, which would be partially responsible for the circadian rhythmicity of insulin in the organism. More recently, a new line of evidence has shown that glucose transporters GLUT/SLC2A are linked to melatonin uptake and its cellular internalization. Beside its binding to membrane receptors, melatonin transportation into the cytoplasm, required for its free radical scavenging abilities, still generates a great deal of debate. Thus, GLUT transporters might constitute at least one of the keys to explain the relationship between glucose and melatonin. These and other potential mechanisms responsible for such interaction are also discussed here.


Assuntos
Glucose/metabolismo , Melatonina/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Metabolismo Energético , Humanos , Insulina/metabolismo , Glândula Pineal/metabolismo , Transporte Proteico , Vesículas Secretórias/metabolismo
5.
Redox Biol ; 17: 112-127, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29684818

RESUMO

Glucose, chief metabolic support for cancer cell survival and growth, is mainly imported into cells by facilitated glucose transporters (GLUTs). The increase in glucose uptake along with tumor progression is due to an increment of facilitative glucose transporters as GLUT1. GLUT1 prevents cell death of cancer cells caused by growth factors deprivation, but there is scarce information about its role on the damage caused by glucose deprivation, which usually occurs within the core of a growing tumor. In prostate cancer (PCa), GLUT1 is found in the most aggressive tumors, and it is regulated by androgens. To study the response of androgen-sensitive and insensitive PCa cells to glucose deprivation and the role of GLUT1 on survival mechanisms, androgen-sensitive LNCaP and castration-resistant LNCaP-R cells were employed. Results demonstrated that glucose deprivation induced a necrotic type of cell death which is prevented by antioxidants. Androgen-sensitive cells show a higher resistance to cell death triggered by glucose deprivation than castration-resistant cells. Glucose removal causes an increment of H2O2, an activation of androgen receptor (AR) and a stimulation of AMP-activated protein kinase activity. In addition, glucose removal increases GLUT1 production in androgen sensitive PCa cells. GLUT1 ectopic overexpression makes PCa cells more resistant to glucose deprivation and oxidative stress-induced cell death. Under glucose deprivation, GLUT1 overexpressing PCa cells sustains mitochondrial SOD2 activity, compromised after glucose removal, and significantly increases reduced glutathione (GSH). In conclusion, androgen-sensitive PCa cells are more resistant to glucose deprivation-induced cell death by a GLUT1 upregulation through an enhancement of reduced glutathione levels.


Assuntos
Transportador de Glucose Tipo 1/genética , Estresse Oxidativo/genética , Neoplasias de Próstata Resistentes à Castração/genética , Superóxido Dismutase/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/química , Masculino , Próstata/metabolismo , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...