Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1276: 341632, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573113

RESUMO

In this work, a geological sample of great astrobiological interest was studied through analytical techniques that are currently operating in situ on Mars and others that will operate in the near future. The sample analyzed consisted of an oncoid, which is a type of microbialite, collected in the Salar Carachi Pampa, Argentina. The main peculiarity of microbialites is that they are organo-sedimentary deposits formed by the in situ fixation and precipitation of calcium carbonate due to the growth and metabolic activities of microorganisms. For this reason, the Carachi Pampa oncoid was selected as a Martian analog for astrobiogeochemistry study. In this sense, the sample was characterized by means of the PIXL-like, SuperCam-like and SHERLOC-like instruments, which represent instruments on board the NASA Perseverance rover, and by means of RLS-like and MOMA-like instruments, which represent instruments on board the future ESA Rosalind Franklin rover. It was possible to verify that the most important conclusions and discoveries have been obtained from the combination of the results. Likewise, it was also shown that Perseverance rover-like remote-sensing instruments allowed a first detailed characterization of the biogeochemistry of the Martian surface. With this first characterization, areas of interest for in-depth analysis with Rosalind Franklin-like instruments could be identified. Therefore, from a first remote-sensing elemental identification (PIXL-like instrument), followed by a remote-sensing molecular characterization (SuperCam and SHERLOC-like instruments) and ending with an in-depth microscopic analysis (RLS and MOMA-like instruments), a wide variety of compounds were found. On the one hand, the expected minerals were carbonates, such as aragonite, calcite and high-magnesium calcite. On the other hand, unexpected compounds consisted of minerals related to the Martian/terrestrial surface (feldspars, pyroxenes, hematite) and organic compounds related to the past biological activity related to the oncoid (kerogen, lipid biomarkers and carotenes). Considering samples resembling microbialites have already been found on Mars and that one of the main objectives of the missions is to identify traces of past life, the study of microbialites is a potential way to find biosignatures protected from the inhospitable Martian environment. In addition, it should be noted that in this work, further conclusions have been obtained through the study of the results as a whole, which could also be carried out on Mars.

3.
Nature ; 605(7911): 653-658, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364602

RESUMO

Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2-4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s-1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.

4.
Talanta ; 227: 122162, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714466

RESUMO

Quantitative bioimaging of Quantum Dots (QDs) uptake in single cells by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a challenging task due to the high sensitivity and high spatial resolution required, and to the lack of matrix-matched reference materials. In this work, high spatially resolved quantitative bioimaging of CdSe/ZnS QDs uptake in single HT22 mouse hippocampal neuronal cells and in single HeLa human cervical carcinoma cells is novelty investigated combining: (a) the use of a ns-LA-ICP-Sector Field (SF)MS unit with mono-elemental fast and sensitive single pulse response for 114Cd+; and (b) the spatially resolved analysis of dried pL-droplets from a solution with a known concentration of these QDs to obtain a response factor that allows quantification of elemental bioimages. Single cells and dried pL-droplets are morphologically characterized by Atomic Force Microscopy (AFM) to determine their volume and thickness distribution. Moreover, operating conditions (e.g. spot size, energy per laser pulse, etc.) are optimized to completely ablate the cells and pL droplets at high spatial resolution. Constant operating conditions for the analysis of the single cells and calibrating samples is employed to reduce potential fractionation effects related to mass load effects in the ICP. A number concentration of CdSe/ZnS QDs between 3.5 104 and 48 104 is estimated to be uptaken by several selected single HT22 and HeLa cells, after being incubated in the presence of a QDs suspension added to a standard cell culture medium. Mono-elemental bioimaging at subcellular resolution seems to show a higher number concentration of the CdSe/ZnS QDs in the cytosol around the cell nucleus.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Animais , Células HeLa , Humanos , Camundongos , Sulfetos , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...