RESUMO
In recent years, it has been discovered that the expression of long non-coding RNAs is highly deregulated in several types of cancer and contributes to its progression and development. Recently, it has been described that in tumors of the digestive system, such as colorectal cancer, pancreatic cancer, and gastric cancer, DNA damage-activated lncRNA (NORAD) was frequently up-regulated. The purpose of this review is to elucidate the functions of NORAD in tumors of the digestive system, emphasizing its involvement in important cellular processes such as invasion, metastasis, proliferation, and apoptosis. NORAD acts as a ceRNA (competitive endogenous RNA) that sponges microRNAs and regulates the expression of target genes involved in tumorigenesis. Thus, the mechanisms underlying the effects of NORAD are complex and involve multiple signaling pathways. This review consolidates current knowledge on the role of NORAD in digestive cancers and highlights the need for further research to explore its potential as a therapeutic target. Understanding the intricate functions of NORAD could elucidate the way for innovative approaches to cancer treatment.
RESUMO
Prostate cancer (PCa) is a prevalent malignancy in men globally. Current diagnostic methods like PSA testing have limitations, leading to overdiagnosis and unnecessary treatment. Castration-resistant prostate cancer (CRPC) emerges in some patients receiving androgen deprivation therapy (ADT). This study explores the potential of circulating microRNA-107 (miR-107) in liquid biopsies as a prognosis tool to differentiate CRPC from non-castration-resistant PCa (NCRPC). We designed a case-control study to evaluate circulating miR-107 in serum as a potential prognosis biomarker. We analyzed miR-107 expression in liquid biopsies and found significantly higher levels (p < 0.005) in CRPC patients, compared to NCRPC. Notably, miR-107 expression was statistically higher in the advanced stage (clinical stage IV), compared to stages I-III. Furthermore, CRPC patients exhibited significantly higher miR-107 levels (p < 0.05), compared to NCRPC. These findings suggest that miR-107 holds promise as a non-invasive diagnostic biomarker for identifying potential CRPC patients.
RESUMO
BACKGROUND: Short tandem repeats (STRs) are the most widely used genetic markers in forensic genetics. Therefore, it is essential to document genetic population data of new kits designed for human identification purposes to enable laboratories to use these genetic systems to interpret and solve forensic casework. However, in Mexico, there are no studies with the PowerPlex Fusion 6C System, which includes 26 STRs (23 autosomal STRs and 3 Y-STRs). METHODS AND RESULTS: 600 DNA samples from Mexico City were subjected to genotyping using the PowerPlex Fusion 6C System. For autosomal STRs, 312 different alleles were observed. Combined PE and PD were 99.999999809866% and 99.99999999999999999999999818795%, respectively. Genetic distances and AMOVA test showed low but significant differentiation between Mexican populations. CONCLUSIONS: The results reported in this work demonstrate the efficacy of this system for human identification purposes in the population studied and justify its possible application in other Mexican Mestizo populations.
Assuntos
Impressões Digitais de DNA , Genética Populacional , Humanos , Frequência do Gene/genética , México , Impressões Digitais de DNA/métodos , Repetições de Microssatélites/genéticaRESUMO
Tritrichomonas foetus is a protozoan parasite that causes a venereal disease in cattle limiting reproduction by abortions and sterility. The immune response against this parasite is poorly understood. Since the iron and calcium ions are important regulators of the microenvironment of the urogenital tract in cattle, we decided to evaluate the role of these divalent cations on the antigenicity of membrane proteins of T. foetus on macrophage activation as one of the first inflammatory responses towards this pathogen. Colorimetric methods and ELISA were used to detect the nitric oxide and oxygen peroxide production and expression of cytokines in culture supernatant from macrophage incubated with membrane proteins from T. foetus cultured in iron- and calcium-rich conditions. qRT-PCR assays were used to evaluate the transcript expression of genes involved in the inflammatory response on the macrophages. The membrane proteins used for in vitro stimulation caused the up-regulation of the iNOS and NOX-2 genes as well as the generation of NO and H2 O2 in murine macrophages on a dependent way of the metal concentrations. Additionally, after stimulation, macrophages showed a considerable rise in pro-inflammatory cytokines and a downregulation of anti-inflammatory cytokines, as well as up-regulation in the transcription of the TLR4 and MyD88 genes. These data suggest that membrane proteins of T. foetus induced by iron and calcium can activate an inflammatory specific macrophage response via TLR4/MyD88 signalling pathway.
Assuntos
Doenças dos Bovinos , Tritrichomonas foetus , Animais , Bovinos , Feminino , Camundongos , Gravidez , Cálcio/metabolismo , Doenças dos Bovinos/parasitologia , Citocinas/metabolismo , Ferro/metabolismo , Macrófagos , Proteínas de Membrana/metabolismo , Fator 88 de Diferenciação Mieloide , Receptor 4 Toll-Like , Tritrichomonas foetus/genética , Tritrichomonas foetus/metabolismoRESUMO
Tritrichomonas foetus is a flagellated parasite that primarily infects the reproductive tissues of livestock, causing bovine trichomoniasis. The cytoplasmic membrane of T. foetus contains various compounds that contribute to adherence, colonization, and pathogenicity. Metronidazole (MTZ) is the main treatment for trichomoniasis, but the emergence of drug-resistant strains is a concern due to improper use and dosing. T. foetus infection induces inflammation, and macrophages are key players in the immune response. However, our understanding of the host's immune response to T. foetus is limited, and the specific mechanisms underlying these responses are not well understood. This study aimed to investigate the impact of T. foetus surface proteins from trophozoites cultured under different sublethal MTZ conditions (MTZ-treated T. foetus MPs) on macrophage activation. By analyzing cytokine levels and gene expression in murine macrophages, we demonstrated that MTZ-treated T. foetus MPs induce a specific proinflammatory response. MTZ-treated T. foetus MPs-exposed macrophages exhibited a higher NO and H2 O2 production and overexpression of iNOS and NOX-2 genes in comparison to untreated T. foetus. Additionally, MTZ-treated T. foetus MPs triggered a significant induction of the proinflammatory cytokines IL-1ß, IL-6, TNF-α, and IFN-γ, as well as the overexpression of the TLR4, MyD88, and NF-κB genes on murine macrophages. The study aimed to unravel the immunological response and potential proinflammatory pathways involved in T. foetus infection and MTZ stress. Understanding the immune responses and mechanisms through which T. foetus surface proteins activate macrophages can contribute to the development of new therapeutic strategies for controlling bovine trichomoniasis.
Assuntos
Tricomoníase , Tritrichomonas foetus , Animais , Bovinos , Camundongos , Metronidazol/farmacologia , Citocinas , Macrófagos , Proteínas de MembranaRESUMO
Testicular cancer is the most prevalent tumor among males aged 15 to 35, resulting in a significant number of newly diagnosed cases and fatalities annually. Non-coding RNAs (ncRNAs) have emerged as key regulators in various cellular processes and pathologies, including testicular cancer. Their involvement in gene regulation, coding, decoding, and overall gene expression control suggests their potential as targets for alternative treatment approaches for this type of cancer. Furthermore, epigenetic modifications, such as histone modifications, DNA methylation, and the regulation by microRNA (miRNA), have been implicated in testicular tumor progression and treatment response. Epigenetics may also offer critical insights for prognostic evaluation and targeted therapies in patients with testicular germ cell tumors (TGCT). This comprehensive review aims to present the latest discoveries regarding the involvement of some proteins and ncRNAs, mainly miRNAs and lncRNA, in the epigenetic aspect of testicular cancer, emphasizing their relevance in pathogenesis and their potential, given the fact that their specific expression holds promise for prognostic evaluation and targeted therapies.
Assuntos
MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Masculino , Humanos , Neoplasias Testiculares/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Epigênese Genética , Neoplasias Embrionárias de Células Germinativas/genéticaRESUMO
To understand whether protein Tv-PSP1 from Trichomonas vaginalis recognizes mRNA parasite stem-loop structures, we conducted REMSA and intrinsic fluorescence assays. We found the recombinant Tv-PSP1 structure, determined with X-ray crystallography, showed unusual thermal stability of the quaternary structure, associated with a disulfide bridge CYS76-CYS104. To gain deeper insight into the Tv-PSP1 interaction with mRNA stem-loops (mRNAsl) and its relationship with thermal stability, we also used an integrated computational protocol that combined molecular dynamics simulations, docking assays, and binding energy calculations. Docking models allowed us to determine a putative contact surface interaction region between Tv-PSP1 and mRNAsl. We determined the contributions of these complexes to the binding free energy (ΔGb) in the electrostatic (ΔGelec) and nonelectrostatic (ΔGnon-elec) components using the Adaptive Poisson-Boltzmann Solver (APBS) program. We are the first, to the best of our knowledge, to show the interaction between Tv-PSP1 and the stem-loop structures of mRNA.
RESUMO
BACKGROUND: Vasculogenic mimicry (VM) is characterized by formation of three-dimensional (3D) channels-like structures by tumor cells, supplying the nutrients needed for tumor growth. VM is stimulated by hypoxic tumor microenvironment, and it has been associated with increased metastasis and clinical poor outcome in cancer patients. cAMP responsive element (CRE)-binding protein 5 (CREB5) is a hypoxia-activated transcription factor involved in tumorigenesis. However, CREB5 functions in VM and if its regulated by microRNAs remains unknown in breast cancer. OBJECTIVE: We aim to study the functional relationships between VM, CREB5 and microRNA-204-5p (miR-204) in breast cancer cells. METHODS: CREB5 expression was evaluated by mining the public databases, and using RT-qPCR and Western blot assays. CREB5 expression was silenced using short-hairpin RNAs in MDA-MB-231 and MCF-7 breast cancer cells. VM formation was analyzed using matrigel-based cultures in hypoxic conditions. MiR-204 expression was restored in cancer cells by transfection of RNA mimics. Luciferase reporter assays were performed to evaluate the binding of miR-204 to 3'UTR of CREB5. RESULTS: Our data showed that CREB5 mRNA expression was upregulated in a set of breast cancer cell lines and clinical tumors, and it was positively associated with poor prognosis in lymph nodes positive and grade 3 basal breast cancer patients. Silencing of CREB5 impaired the hypoxia-induced formation of 3D channels-like structures representative of the early stages of VM in MDA-MB-231 cells. In contrast, VM formation was not observed in MCF-7 cells. Interestingly, we found that CREB5 expression was negatively regulated by miR-204 mimics in breast cancer cells. Functional analysis confirmed that miR-204 binds to CREB5 3'-UTR indicating that it's an ulterior effector. CONCLUSIONS: Our findings suggested that CREB5 could be a potential biomarker of disease progression in basal subtype of breast cancer, and that perturbations of the miR-204/CREB5 axis plays an important role in VM development in breast cancer cells.
Assuntos
Neoplasias da Mama , MicroRNAs , Regiões 3' não Traduzidas , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/genética , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Fatores de Transcrição/genética , Microambiente TumoralRESUMO
Rhipicephalus microplus is the most serious tick parasite for the livestock industry in tropical and subtropical regions. A cost-effective control method to manage the infestation of this parasite involves the use of chemicals such as ivermectin. However, massive overuse of ivermectin over recent decades has selected for ivermectin-resistant populations of R. microplus. Here, we carried out a comparative proteomic analysis of the midgut of ivermectin-susceptible versus ivermectin-resistant ticks using tandem mass tags coupled to synchronous precursor selection. In susceptible ticks, there was an over-representation of proteins associated with blood digestion and anticoagulation. In contrast, resistant ticks exhibited an over-accumulation of proteins involved in phase I and phase II of the detoxification metabolism, including cytochrome P450, glutathione-S-transferase, and ABC transporters, as well as many ribosomal and other translation-related proteins. This information provides new clues about the mechanisms of ivermectin resistance in R. microplus as well as suggesting potential novel molecular targets to cope with ivermectin-resistant populations of R. microplus. SIGNIFICANCE: Cattle farming is an important primary economic activity for food production all over the globe. However, this activity also has detrimental environmental impacts, including the overuse of ivermectin and other chemicals used to control parasite infestations. The overuse of ivermectin selected for parasites with resistance to this chemical, including tick species like R. microplus. There has been extensive to understand the mechanisms that mediate ivermectin resistance in arthropods, but many gaps remain for the full comprehension of this phenomenon. Understanding the biochemistry behind ivermectin resistance could provide new alternatives to fight these parasites. We therefore consider that determining the metabolic mechanisms involved in ivermectin resistance is of great relevance. The comparative proteomic analysis here reported shows the relevance of the active detoxifying metabolism in the midgut of resistant ticks, which may be key for the development of novel control methods.
Assuntos
Doenças dos Bovinos , Ixodidae , Rhipicephalus , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Glutationa Transferase/metabolismo , Ivermectina/farmacologia , Proteoma/metabolismo , Proteômica , Rhipicephalus/metabolismoRESUMO
The goal of this work is to compile and discuss molecules of marine origin reported in the scientific literature with anti-parasitic activity against Trichomonas, Giardia, and Entamoeba, parasites responsible for diseases that are major global health problems, and Microsporidial parasites as an emerging problem. The presented data correspond to metabolites with anti-parasitic activity in human beings that have been isolated by chromatographic techniques from marine sources and structurally elucidated by spectroscopic and spectrometric procedures. We also highlight some semi-synthetic derivatives that have been successful in enhancing the activity of original compounds. The biological oceanic reservoir offers the possibility to discover new biologically active molecules as lead compounds to develop new drug candidates. The molecular variety is extensive and must be correctly explored and managed. Also, it will be necessary to take some actions to preserve the source species from extinction or overharvest (e.g., by cryopreservation of coral spermatozoa, oocytes, embryos, and larvae) and coordinate appropriate exploitation to increase the chemical knowledge of the natural products generated in the oceans. Additional initiatives such as the total synthesis of complex natural products and their derivatives can help to prevent overharvest of the marine ecosystems and at the same time contribute to the discovery of new molecules.
Assuntos
Antiprotozoários , Produtos Biológicos , Parasitos , Animais , Antiprotozoários/química , Produtos Biológicos/farmacologia , Ecossistema , Giardia , HumanosRESUMO
Alzheimer disease (AD) is the primary form of dementia that occurs spontaneously in older adults. Interestingly, the epigenetic profile of the cells forming the central nervous system changes during aging and may contribute to the progression of some neurodegenerative diseases such as AD. In this review, we present general insights into relevant epigenetic mechanisms and their relationship with aging and AD. The data suggest that some epigenetic changes during aging could be utilized as biomarkers and target molecules for the prevention and control of AD.
RESUMO
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons that results in progressive paralysis and muscular atrophy. There are many molecules and genes involved in neuromuscular degeneration in ALS; among these, matrix metalloproteinases (MMPs). MMPs play an important role in the pathology of ALS, and MMP-1, 2, 3, and 9 might serve as disease progression markers. Tissue inhibitors of metalloproteinases (TIMPS) might also function as progression markers in ALS because they participate in regulating the proteolytic activity of MMPs. Moreover, a diversity of genes also plays a role in the pathogenesis of ALS; most MMPs-coding genes present variants related to the pathological proteolytic activity. This short review, however, will focus on the role of matrix metalloproteinases in ALS.
Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Humanos , Metaloproteinases da Matriz/genética , Neurônios MotoresRESUMO
Zinc is an essential micronutrient that plays an important role as a co-factor to several proteins, including zinc-responsive transcription factors. Trichomonas vaginalis is able to survive in the presence of high zinc concentrations in the male urogenital tract. Several genes in T. vaginalis have been shown to respond to changes in zinc concentrations, however, the zinc-dependent mechanism remains undetermined. Recently, we identified in T. vaginalis the zinc finger protein, TvZNF1, which is an ortholog of the mammal metal transcription factor (MTF1). We searched for several of the zinc-responsive genes in T. vaginalis to determine whether if they contain metal response elements (MRE), cis-acting DNA elements that specifically bind MTF1. Six highly conserved over-represented sequence motifs (TvMREs), which share similarity with other eukaryotic MREs, were identified in the zinc-responsive genes in T. vaginalis. We also demonstrated that some of the TvMREs assemble as divalent complexes either as two closely spaced TvMREs or as two overlapping TvMREs forming a palindromic-like sequence: TGCC(N3)GGCA. Electrophoretic mobility shift assays were used to detect the zinc-dependent binding of TvZNF1 and nuclear proteins from T. vaginalis to this specific palindromic motif. Our results support a novel mechanism used by T. vaginalis for the transcriptional regulation of associated zinc-responsive genes through a MTF1/MRE-like system.
Assuntos
Fatores de Transcrição/genética , Trichomonas vaginalis/genética , Zinco/análise , Elementos de Resposta , Zinco/metabolismoRESUMO
Epigenomics refers to the study of genome-wide changes in epigenetic mechanisms including DNA methylation, histone modifications and non-coding RNAs expression. The alterations in normal DNA methylation and histone acetylation/deacetylation patterns lead to deregulated transcription and chromatin organization resulting in altered gene expression profiles that facilitates tumor development and progression. In consequence, novel therapeutic strategies aimed at reversing aberrant epigenetic marks in cancer cells have been developed and used in recent molecular studies and clinical trials. Pharmaco-epigenomics is a research area, which refers to the study of epigenome changes in cancer development and how chemotherapeutic agents can reverse these aberrant epigenetic marks by targeting the epigenetic machinery. Besides, the effects of genome-wide polymorphisms in populations leading to variations in drug response are also study subject of pharmaco-epigenomics and are being studied extensively in cancer. Recent findings showed that drug response could be largely influenced by the presence of aberrant epigenetic marks of the whole genome. This implies that biological pathways and cellular processes are under the impact of epigenome status. However, data about the relationship between drug response and the epigenomic variations is still scarce mainly because the epigenome is highly variable between individuals. The present chapter reviewed the advances on the epigenetics changes mainly DNA methylation and histones modifications on cervical and breast human cancers. A special emphasis in how they could be used as targets for the development and use of novel drugs in cancer therapy is delineated.
Assuntos
Epigenômica , Farmacogenética , Pesquisa Translacional Biomédica , Metilação de DNA , Epigenômica/tendências , Humanos , Neoplasias/fisiopatologia , Neoplasias/terapia , Farmacogenética/tendências , Pesquisa Translacional Biomédica/tendênciasRESUMO
During angiogenesis, new vessels emerge from existing endothelial lined vessels to promote the degradation of the vascular basement membrane and remodel the extracellular matrix (ECM), followed by endothelial cell migration, and proliferation and the new generation of matrix components. Matrix metalloproteinases (MMPs) participate in the disruption, tumor neovascularization, and subsequent metastasis while tissue inhibitors of metalloproteinases (TIMPs) downregulate the activity of these MMPs. Then, the angiogenic response can be directly or indirectly mediated by MMPs through the modulation of the balance between pro- and anti-angiogenic factors. This review analyzes recent knowledge on MMPs and their participation in angiogenesis.
RESUMO
Trichomoniasis, caused by the protozoan parasite Trichomonas vaginalis, is the most common nonviral sexually transmitted infection worldwide. Although drug treatment is available, unpleasant side effects and increased resistance to the nitroimidazole family have been documented. Hence, there is a need for the identification of new and safe therapeutic agents against T. vaginalis. Antimicrobial activity of anthraquinone compounds has been reported by a number of authors. The genus Morinda is well known for the diversity of anthraquinones with numerous biological activities. A new anthraquinone, lucidin-ω-isopropyl ether, was isolated from the roots of Morinda panamensis Seem. The structure of the compound was determined by 1 H and 13 C Nuclear Magnetic Resonance (NMR) analyses, in addition to comparison with literature reports. Using in vitro susceptibility assay, the half inhibitory concentration (IC50 ) of lucidin-ω-isopropyl ether for T. vaginalis (1.32 µg/mL) was found similar to that of metronidazole concentration tested (6 µM = 1.03 µg/mL). In addition, this anthraquinone was capable of inhibiting the parasite's ability to kill HeLa cells and decreased proteolytic activity of the proteinase TvMP50 from T. vaginalis. This was associated with the decreased expression of the mp50 gene. These results demonstrate the trichomonicidal potential by lucidin-ω-isopropyl ether. Further action-mode studies are necessary to elucidate the antiparasitic mechanism of this new anthraquinone to develop a more potent antitrichomonal agent.
Assuntos
Antraquinonas/farmacologia , Antitricômonas/farmacologia , Morinda , Extratos Vegetais/farmacologia , Raízes de Plantas , Trichomonas vaginalis/efeitos dos fármacos , Antraquinonas/isolamento & purificação , Antitricômonas/isolamento & purificação , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Extratos Vegetais/isolamento & purificação , Trichomonas vaginalis/metabolismoRESUMO
A perchloric acid-soluble protein (PSP), named here tv-psp1, was identified in Trichomonas vaginalis. It is expressed under normal culture conditions according to expressed sequence tag (EST) analysis. On the other hand, Tv-PSP1 protein was identified by mass spectrometry with a 40% of identity to human PSP (p14.1). Polyclonal antibodies against recombinant Tv-PSP1 (rTv-PSP1) recognized a single band at 13.5 kDa in total protein parasite extract by SDS-PAGE and a high molecular weight band analyzed by native PAGE. Structural analysis of Tv-PSP1, using dynamic light scattering, size exclusion chromatography, and circular dichroism spectroscopy, showed a trimeric structure stable at 7 M urea with 38% α-helix and 14% ß-sheet in solution and a molecular weight of 40.5 kD. Tv-PSP1 models were used to perform dynamic simulations over 100 ns suggesting a stable homotrimeric structure. Tv-PSP1 was located in the nucleus, cytoplasm, and hydrogenosomes of T. vaginalis, and the in silico analysis by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) showed interactions with RNA binding proteins. The preliminary results of RNA degradation analysis with the recombinant Tv-PSP1 showed RNA partial deterioration suggesting a possible putative ribonuclease function.
Assuntos
Percloratos/metabolismo , Proteínas de Protozoários/análise , Proteínas de Ligação a RNA/análise , Ribonucleases/análise , Trichomonas vaginalis/metabolismo , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/genética , Ribonucleases/genéticaRESUMO
Murine leprosy, caused by Mycobacterium lepraemurium (MLM), is a chronic disease that closely resembles human leprosy. Even though this disease does not directly involve the nervous system, we investigated a possible effect on working memory during this chronic infection in Balb/c mice. We evaluated alterations in the dorsal region of the hippocampus and measured peripheral levels of cytokines at 40, 80, and 120 days post-infection. To evaluate working memory, we used the T-maze while a morphometric analysis was conducted in the hippocampus regions CA1, CA2, CA3, and dentate gyrus (DG) to measure morphological changes. In addition, a neurochemical analysis was performed by HPLC. Our results show that, at 40 days post-infection, there was an increase in the bacillary load in the liver and spleen associated to increased levels of IL-4, working memory deterioration, and changes in hippocampal morphology, including degeneration in the four subregions analyzed. Also, we found a decrease in neurotransmitter levels at the same time of infection. Although MLM does not directly infect the nervous system, these findings suggest a possible functional link between the immune system and the central nervous system.
Assuntos
Hipocampo/fisiopatologia , Transtornos da Memória/fisiopatologia , Infecções por Mycobacterium/fisiopatologia , Animais , Doença Crônica , Giro Denteado/microbiologia , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Hipocampo/microbiologia , Hipocampo/patologia , Interações Hospedeiro-Patógeno , Interleucina-4/metabolismo , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/metabolismo , Transtornos da Memória/microbiologia , Memória de Curto Prazo , Camundongos Endogâmicos BALB C , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium/microbiologia , Mycobacterium lepraemurium/fisiologia , Neurotransmissores/metabolismo , Fatores de TempoRESUMO
RNA-based multi-target therapies focused in the blocking of signaling pathways represent an attractive approach in cancer. Here, we uncovered a miR-204 cooperative targeting of multiple signaling transducers involved in vasculogenic mimicry (VM). Our data showed that invasive triple negative MDA-MB-231 and Hs-578T breast cancer cells, but not poorly invasive MCF-7â¯cells, efficiently undergoes matrix-associated VM under hypoxia. Ectopic restoration of miR-204 in MDA-MB-231â¯cells leads to a potent inhibition of VM and reduction of number of branch points and patterned 3D channels. Further analysis of activation state of multiple signaling pathways using Phosphorylation Antibody Arrays revealed that miR-204 reduced the expression and phosphorylation levels of 13 proteins involved in PI3K/AKT, RAF1/MAPK, VEGF, and FAK/SRC signaling. In agreement with phospho-proteomic profiling, VM was impaired following pharmacological administration of PI3K and SRC inhibitors. Mechanistic studies confirmed that miR-204 exerts a negative post-transcriptional regulation of PI3K-α and c-SRC proto-oncogenes. Moreover, overall survival analysis of a large cohort of breast cancer patients indicates that low miR-204 and high FAK/SRC levels were associated with worst outcomes. In conclusion, our study provides novel lines of evidence indicating that miR-204 may exerts a fine-tuning regulation of the synergistic transduction of PI3K/AKT/FAK mediators critical in VM formation.
Assuntos
Biomarcadores Tumorais/metabolismo , MicroRNAs/genética , Neovascularização Patológica/prevenção & controle , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Mimetismo Biológico , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Proteômica , Transdução de Sinais , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais CultivadasRESUMO
Previously, metalloproteinase was isolated and identified from Trichomonas vaginalis, belonging to the aminopeptidase P-like metalloproteinase subfamily A/B, family M24 of clan MG, named TvMP50. The native and recombinant TvMP50 showed proteolytic activity, determined by gelatin zymogram, and a 50 kDa band, suggesting that TvMP50 is a monomeric active enzyme. This was an unexpected finding since other Xaa-Pro aminopeptidases/prolidases are active as a biological unit formed by dimers/tetramers. In this study, the evolutionary history of TvMP50 and the preliminary crystal structure of the recombinant enzyme determined at 3.4 Å resolution is reported. TvMP50 was shown to be a type of putative, eukaryotic, monomeric aminopeptidase P, and the crystallographic coordinates showed a monomer on a "pseudo-homodimer" array on the asymmetric unit that resembles the quaternary structure of the M24B dimeric family and suggests a homodimeric aminopeptidase P-like enzyme as a likely ancestor. Interestingly, TvMP50 had a modified N-terminal region compared with other Xaa-Pro aminopeptidases/prolidases with three-dimensional structures; however, the formation of the standard dimer is structurally unstable in aqueous solution, and a comparably reduced number of hydrogen bridges and lack of saline bridges were found between subunits A/B, which could explain why TvMP50 portrays monomeric functionality. Additionally, we found that the Parabasalia group contains two protein lineages with a "pita bread" fold; the ancestral monomeric group 1 was probably derived from an ancestral dimeric aminopeptidase P-type enzyme, and group 2 has a probable dimeric kind of ancestral eukaryotic prolidase lineage. The implications of such hypotheses are also presented.