Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Clin Nutr Metab Care ; 26(1): 50-54, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542534

RESUMO

PURPOSE OF REVIEW: The metabolic signature associated with obesity is characterized by a decrease in plasma glycine concentration, a feature closely associated with insulin resistance and highly predictive of the risk of developing chronic metabolic diseases. This review presents recent advances in understanding the causes of decreased glycine availability and in targeting strategies to replenish the glycine pool and especially to improve insulin resistance. RECENT RESULTS: Recent literature has made progress in understanding host and gut microbiota mechanisms in determining circulating glycine levels. It has also explored new clinical pathways to restore circulating glycine levels and insulin resistance in obesity-related metabolic diseases. SUMMARY: Recent findings suggest that glycine metabolism must now be considered in close interaction with branched-chain amino acid (BCAA) metabolism. Thus, strategies that decrease BCAAs seem to be the best to restore glycine. Furthermore, recent literature has confirmed that lifestyle strategies aimed at inducing weight loss are effective in replenishing the glycine pool. It also confirms that correcting the dysbiosis of the gut microbiota associated with obesity may be a valuable means of achieving this goal. However, it remains unclear whether dietary glycine is an effective strategy for correcting cardiometabolic disorders in obesity.


Assuntos
Resistência à Insulina , Doenças Metabólicas , Humanos , Obesidade/metabolismo , Dieta , Aminoácidos de Cadeia Ramificada/metabolismo , Doenças Metabólicas/complicações , Glicina
2.
Nutrients ; 15(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36615754

RESUMO

Interactions between mitochondria and the endoplasmic reticulum, known as MAMs, are altered in the liver in obesity, which contributes to disruption of the insulin signaling pathway. In addition, the plasma level of glycine is decreased in obesity, and the decrease is strongly correlated with the severity of insulin resistance. Certain nutrients have been shown to regulate MAMs; therefore, we tested whether glycine supplementation could reduce insulin resistance in the liver by promoting MAM integrity. Glycine (5 mM) supported MAM integrity and insulin response in primary rat hepatocytes cultured under control and lipotoxic (palmitate 500 µM) conditions for 18 h. In contrast, in C57 BL/6 JOlaHsd mice (male, 6 weeks old) fed a high-fat, high-sucrose diet (HFHS) for 16 weeks, glycine supplementation (300 mg/kg) in drinking water during the last 6 weeks (HFHS-Gly) did not reverse the deleterious impact of HFHS-feeding on liver MAM integrity. In addition, glycine supplementation worsened fasting glycemia and glycemic response to intraperitoneal pyruvate injection compared to HFHS. The adverse impact of glycine supplementation on hepatic gluconeogenesis was further supported by the higher oxaloacetate/acetyl-CoA ratio in the liver in HFHS-Gly compared to HFHS. Although glycine improves MAM integrity and insulin signaling in the hepatocyte in vitro, no beneficial effect was found on the overall metabolic profile of HFHS-Gly-fed mice.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Masculino , Ratos , Camundongos , Animais , Intolerância à Glucose/metabolismo , Resistência à Insulina/fisiologia , Gluconeogênese , Glicina/farmacologia , Fígado/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Insulina , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Camundongos Endogâmicos C57BL
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(12): 159030, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34419589

RESUMO

In the liver, contact sites between the endoplasmic reticulum (ER) and mitochondria (named MAMs) may be crucial hubs for the regulation of lipid metabolism, thus contributing to the exacerbation or prevention of fatty liver. We hypothesized that tether proteins located at MAMs could play a key role in preventing triglyceride accumulation in hepatocytes and nonalcoholic fatty liver disease (NAFLD) occurrence. To test this, we explored the role of two key partners in building MAM integrity and functionality, the glucose-regulated protein 75 (Grp75) and mitofusin 2 (Mfn2), which liver contents are altered in obesity and NAFLD. Grp75 or Mfn2 expression was either silenced using siRNA or overexpressed with adenoviruses in Huh7 cells. Silencing of Grp75 and Mfn2 resulted in decreased ER-mitochondria interactions, mitochondrial network fusion state and mitochondrial oxidative capacity, while overexpression of the two proteins induced mirror impacts on these parameters. Furthermore, Grp75 or Mfn2 silencing decreased cellular cholesterol content and enhanced triglyceride secretion in ApoB100 lipoproteins, while their overexpression led to reverse effects. Cellular phosphatidylcholine/phosphatidylethanolamine ratio was decreased only upon overexpression of the proteins, potentially contributing to altered ApoB100 assembly and secretion. Despite the opposite differences, both silencing and overexpression of Grp75 or Mfn2 induced triglyceride storage, although a fatty acid challenge was required to express the alteration upon protein silencing. Among the mechanisms potentially involved in this phenotype, ER stress was closely associated with altered triglyceride metabolism after Grp75 or Mfn2 overexpression, while blunted mitochondrial FA oxidation capacity may be the main defect causing triglyceride accumulation upon Grp75 or Mfn2 silencing. Further studies are required to decipher the link between modulation of Grp75 or Mfn2 expression, change in MAM integrity and alteration of cholesterol content of the cell. In conclusion, Grp75 or Mfn2 silencing and overexpression in Huh7 cells contribute to altering MAM integrity and cholesterol storage in opposite directions, but all promote triglyceride accumulation through distinct cellular pathways. This study also highlights that besides Mfn2, Grp75 could play a central role in hepatic lipid and cholesterol metabolism in obesity and NAFLD.


Assuntos
Apolipoproteína B-100/genética , Colesterol/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas Mitocondriais/genética , Hepatopatia Gordurosa não Alcoólica/genética , Linhagem Celular , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/antagonistas & inibidores , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica/genética , Inativação Gênica , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Mutação com Perda de Função/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Triglicerídeos/metabolismo
4.
Cells ; 8(11)2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731523

RESUMO

Under physiological conditions, nitric oxide (NO) produced by the endothelial NO synthase (eNOS) upregulates hepatic insulin sensitivity. Recently, contact sites between the endoplasmic reticulum and mitochondria named mitochondria-associated membranes (MAMs) emerged as a crucial hub for insulin signaling in the liver. As mitochondria are targets of NO, we explored whether NO regulates hepatic insulin sensitivity by targeting MAMs. In Huh7 cells, primary rat hepatocytes and mouse livers, enhancing NO concentration increased MAMs, whereas inhibiting eNOS decreased them. In vitro, those effects were prevented by inhibiting protein kinase G (PKG) and mimicked by activating soluble guanylate cyclase (sGC) and PKG. In agreement with the regulation of MAMs, increasing NO concentration improved insulin signaling, both in vitro and in vivo, while eNOS inhibition disrupted this response. Finally, inhibition of insulin signaling by wortmannin did not affect the impact of NO on MAMs, while experimental MAM disruption, using either targeted silencing of cyclophilin D or the overexpression of the organelle spacer fetal and adult testis-expressed 1 (FATE-1), significantly blunted the effects of NO on both MAMs and insulin response. Therefore, under physiological conditions, NO participates to the regulation of MAM integrity through the sGC/PKG pathway and concomitantly improves hepatic insulin sensitivity. Altogether, our data suggest that the induction of MAMs participate in the impact of NO on hepatocyte insulin response.


Assuntos
Hepatócitos/metabolismo , Resistência à Insulina/fisiologia , Membranas Mitocondriais/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III , Cultura Primária de Células , Ratos , Transdução de Sinais/efeitos dos fármacos , Guanilil Ciclase Solúvel/metabolismo , Wortmanina/metabolismo
5.
Nutrients ; 11(6)2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31208147

RESUMO

Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency-especially in obesity and associated metabolic disorders-and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Glicina/farmacocinética , Doenças Metabólicas/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Obesidade/sangue , Disponibilidade Biológica , Diabetes Mellitus Tipo 2/etiologia , Dieta/efeitos adversos , Microbioma Gastrointestinal , Humanos , Fígado/metabolismo , Doenças Metabólicas/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...