Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34832939

RESUMO

Many bacteriophages are obligate killers of bacteria. That this property could be medically useful was first recognized over one hundred years ago, with 2021 being the 100-year anniversary of the first clinical phage therapy publication. Here we consider modern use of phages in clinical settings. Our aim is to answer one question: do phages serve as effective anti-bacterial infection agents when used clinically? An important emphasis of our analyses is on whether phage therapy-associated anti-bacterial infection efficacy can be reasonably distinguished from that associated with often coadministered antibiotics. We find that about half of 70 human phage treatment reports-published in English thus far in the 2000s-are suggestive of phage-mediated anti-bacterial infection efficacy. Two of these are randomized, double-blinded, infection-treatment studies while 14 of those studies, in our opinion, provide superior evidence of a phage role in observed treatment successes. Roughly three-quarters of these potentially phage-mediated outcomes are based on microbiological as well as clinical results, with the rest based on clinical success. Since many of these phage treatments are of infections for which antibiotic therapy had not been successful, their collective effectiveness is suggestive of a valid utility in employing phages to treat otherwise difficult-to-cure bacterial infections.

2.
Front Microbiol ; 10: 1783, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447809

RESUMO

Proteus mirabilis often complicates the care of catheterized patients through the formation of crystalline biofilms which block urine flow. Bacteriophage therapy has been highlighted as a promising approach to control this problem, but relatively few phages infecting P. mirabilis have been characterized. Here we characterize five phages capable of infecting P. mirabilis, including those shown to reduce biofilm formation, and provide insights regarding the wider ecological and evolutionary relationships of these phages. Transmission electron microscopy (TEM) imaging of phages vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, vB_PmiP_RS3pmA, and vB_PmiP_RS8pmA showed that all share morphologies characteristic of the Podoviridae family. The genome sequences of vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, and vB_PmiP_RS3pmA showed these are species of the same phage differing only by point mutations, and are closely related to vB_PmiP_RS8pmA. Podophages characterized in this study were also found to share similarity in genome architecture and composition to other previously described P. mirabilis podophages (PM16 and PM75). In contrast, vB_PimP_RS51pmB showed morphology characteristic of the Myoviridae family, with no notable similarity to other phage genomes examined. Ecogenomic profiling of all phages revealed no association with human urinary tract viromes, but sequences similar to vB_PimP_RS51pmB were found within human gut, and human oral microbiomes. Investigation of wider host-phage evolutionary relationships through tetranucleotide profiling of phage genomes and bacterial chromosomes, indicated vB_PimP_RS51pmB has a relatively recent association with Morganella morganii and other non-Proteus members of the Morganellaceae family. Subsequent host range assays confirmed vB_PimP_RS51pmB can infect M. morganii.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29963501

RESUMO

Biofilm formation in wounds is considered a major barrier to successful treatment, and has been associated with the transition of wounds to a chronic non-healing state. Here, we present a novel laboratory model of wound biofilm formation using ex-vivo porcine skin and a custom burn wound array device. The model supports high-throughput studies of biofilm formation and is compatible with a range of established methods for monitoring bacterial growth, biofilm formation, and gene expression. We demonstrate the use of this model by evaluating the potential for bacteriophage to control biofilm formation by Staphylococcus aureus, and for population density dependant expression of S. aureus virulence factors (regulated by the Accessory Gene Regulator, agr) to signal clinically relevant wound infection. Enumeration of colony forming units and metabolic activity using the XTT assay, confirmed growth of bacteria in wounds and showed a significant reduction in viable cells after phage treatment. Confocal laser scanning microscopy confirmed the growth of biofilms in wounds, and showed phage treatment could significantly reduce the formation of these communities. Evaluation of agr activity by qRT-PCR showed an increase in activity during growth in wound models for most strains. Activation of a prototype infection-responsive dressing designed to provide a visual signal of wound infection, was related to increased agr activity. In all assays, excellent reproducibility was observed between replicates using this model.


Assuntos
Biofilmes/crescimento & desenvolvimento , Queimaduras/microbiologia , Pele/lesões , Staphylococcus aureus/crescimento & desenvolvimento , Infecção dos Ferimentos/prevenção & controle , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Queimaduras/patologia , Queimaduras/veterinária , Humanos , Terapia por Fagos/veterinária , Reprodutibilidade dos Testes , Pele/patologia , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/terapia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/virologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Staphylococcus aureus/virologia , Suínos , Transativadores/genética , Transativadores/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/fisiologia , Infecção dos Ferimentos/terapia , Infecção dos Ferimentos/veterinária , Infecção dos Ferimentos/virologia
5.
J Mater Chem B ; 5(27): 5403-5411, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264080

RESUMO

The crystalline biofilms of Proteus mirabilis can seriously complicate the care of patients undergoing long-term indwelling urinary catheterisation. Expression of bacterial urease causes a significant increase in urinary pH, leading to the supersaturation and precipitation of struvite and apatite crystals. These crystals become lodged within the biofilm, resulting in the blockage of urine flow through the catheter. Here, we describe an infection-responsive surface coating for urinary catheters, which releases a therapeutic dose of bacteriophage in response to elevated urinary pH, in order to delay catheter blockage. The coating employs a dual-layered system comprising of a lower hydrogel 'reservoir' layer impregnated with bacteriophage, capped by a 'trigger' layer of the pH-responsive polymer poly(methyl methacrylate-co-methacrylic acid) (EUDRAGIT®S 100). Evaluation of prototype coatings using a clinically reflective in vitro bladder model system showed that catheter blockage time was doubled (13 h to 26 h (P < 0.05)) under conditions of established infection (108 CFU ml-1) in response to a 'burst-release' of bacteriophage (108 PFU ml-1). Coatings were stable both in the absence of infection, and in the presence of urease-negative bacteria. Quantitative and visual analysis of crystalline biofilm reduction show that bacteriophage constitute a promising strategy for the prevention of catheter blockage, a clinical problem for which there is currently no effective control method.

6.
Microb Biotechnol ; 9(1): 61-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26347362

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen that forms highly stable communities - biofilms, which contribute to the establishment and maintenance of infections. The biofilm state and intrinsic/acquired bacterial resistance mechanisms contribute to resistance/tolerance to antibiotics that is frequently observed in P. aeruginosa isolates. Here we describe the isolation and characterization of six novel lytic bacteriophages: viruses that infect bacteria, which together efficiently infect and kill a wide range of P. aeruginosa clinical isolates. The phages were used to formulate a cocktail with the potential to eliminate P. aeruginosa PAO1 planktonic cultures. Two biofilm models were studied, one static and one dynamic, and the phage cocktail was assessed for its ability to reduce and disperse the biofilm biomass. For the static model, after 4 h of contact with the phage suspension (MOI 10) more than 95% of biofilm biomass was eliminated. In the flow biofilm model, a slower rate of activity by the phage was observed, but 48 h after addition of the phage cocktail the biofilm was dispersed, with most cells eliminated (> 4 logs) comparing with the control. This cocktail has the potential for development as a therapeutic to control P. aeruginosa infections, which are predominantly biofilm centred.


Assuntos
Bacteriófagos/fisiologia , Biofilmes , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Bacteriófagos/genética , Humanos , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/virologia
7.
Antimicrob Agents Chemother ; 60(3): 1530-6, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26711744

RESUMO

Proteus mirabilis forms dense crystalline biofilms on catheter surfaces that occlude urine flow, leading to serious clinical complications in long-term catheterized patients, but there are presently no truly effective approaches to control catheter blockage by this organism. This study evaluated the potential for bacteriophage therapy to control P. mirabilis infection and prevent catheter blockage. Representative in vitro models of the catheterized urinary tract, simulating a complete closed drainage system as used in clinical practice, were employed to evaluate the performance of phage therapy in preventing blockage. Models mimicking either an established infection or early colonization of the catheterized urinary tract were treated with a single dose of a 3-phage cocktail, and the impact on time taken for catheters to block, as well as levels of crystalline biofilm formation, was measured. In models of established infection, phage treatment significantly increased time taken for catheters to block (∼ 3-fold) compared to untreated controls. However, in models simulating early-stage infection, phage treatment eradicated P. mirabilis and prevented blockage entirely. Analysis of catheters from models of established infection 10 h after phage application demonstrated that phage significantly reduced crystalline biofilm formation but did not significantly reduce the level of planktonic cells in the residual bladder urine. Taken together, these results show that bacteriophage constitute a promising strategy for the prevention of catheter blockage but that methods to deliver phage in sufficient numbers and within a key therapeutic window (early infection) will also be important to the successful application of phage to this problem.


Assuntos
Bacteriófagos/patogenicidade , Terapia por Fagos/métodos , Infecções por Proteus/terapia , Proteus mirabilis/virologia , Cateterismo Urinário/efeitos adversos , Cateteres Urinários/microbiologia , Bacteriófagos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Cateteres de Demora/microbiologia , Drenagem , Humanos , Microscopia Eletrônica de Transmissão , Modelos Biológicos
8.
Eur J Pharm Biopharm ; 96: 437-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26423908

RESUMO

Due to the increased prevalence of resistant bacterial isolates which are no longer susceptible to antibiotic treatment, recent emphasis has been placed on finding alternative modes of treatment of wound infections. Bacteriophage have long been investigated for their antimicrobial properties, yet the utilization of phage therapy for the treatment of wound infections relies on a suitable delivery system. Poly(N-isopropylacrylamide) (PNIPAM) is a thermally responsive polymer which undergoes a temperature dependent phase transition at a critical solution temperature. Bacteriophage K has been successfully formulated with PNIPAM nanospheres copolymerized with allylamine (PNIPAM-co-ALA). By utilizing a temperature responsive polymer it has been possible to engineer the nanospheres to collapse at an elevated temperature associated with a bacterial skin infection. The nanogels were reacted with surface deposited maleic anhydride in order to anchor the nanogels to non-woven fabric. Bacteriophage incorporated PNIPAM-co-ALA nanospheres demonstrated successful bacterial lysis of a clinically relevant bacterial isolate - Staphylococcus aureus ST228 at 37°C, whilst bacterial growth was unaffected at 25°C, thus providing a thermally triggered release of bacteriophage.


Assuntos
Resinas Acrílicas/química , Antibacterianos/química , DNA Viral/química , Nanosferas/química , RNA Viral/química , Staphylococcus aureus/efeitos dos fármacos , Adesividade , Administração Cutânea , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Bacteriólise/efeitos dos fármacos , Bacteriófagos/fisiologia , DNA Viral/administração & dosagem , DNA Viral/farmacologia , Portadores de Fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Farmacorresistência Bacteriana , Temperatura Alta , Lisogenia , Anidridos Maleicos/química , Nanosferas/ultraestrutura , Transição de Fase , RNA Viral/administração & dosagem , RNA Viral/farmacologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/virologia , Propriedades de Superfície , Tropismo Viral
9.
Biotechnol Prog ; 30(4): 932-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24616404

RESUMO

Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies.


Assuntos
Bacteriófagos , Emulsões/administração & dosagem , Técnicas de Fechamento de Ferimentos , Cicatrização , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/química , Emulsões/química , Humanos , Nanocompostos/administração & dosagem , Nanocompostos/química , Óleos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...