Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Catal Sci Technol ; 14(5): 1138-1147, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38449728

RESUMO

Considering the alarming scenario of climate change, CO2 hydrogenation to methanol is considered a key process for phasing out fossil fuels by means of CO2 utilization. In this context, MoS2 catalysts have recently shown to be promising catalysts for this reaction, especially in the presence of abundant basal-plane sulfur vacancies and due to synergistic mechanisms with other phases. In this work, Mn-promoted MoS2 prepared by a hydrothermal method presents considerable selectivity for CO2 hydrogenation to methanol in comparison with pure MoS2 and other promoters such as K and Co. Interestingly, if CO is used as a carbon source for the reaction, methanol production is remarkably lower, which suggests the absence of a CO intermediate during CO2 hydrogenation to methanol. After optimization of synthesis parameters, a methanol selectivity of 64% is achieved at a CO2 conversion of 2.8% under 180 °C. According to material characterization by X-ray Diffraction and X-ray Absorption, the Mn promoter is present mainly in the form of MnO and MnCO3 phases, with the latter undergoing convertion to MnO upon H2 pretreatment. However, following exposure to reaction conditions, X-ray photoelectron spectroscopy suggests that higher oxidation states of Mn may be present at the surface, suggesting that the improved catalytic activity for CO2 hydrogenation to methanol arises from a synergy between MoS2 and MnOx at the catalyst surface.

2.
Front Bioeng Biotechnol ; 11: 1179269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362211

RESUMO

Carbon and nitrogen are crucial elements for life and must be efficiently regenerated in a circular economy. Biomass streams at the end of their useful life, such as sewage sludge, are difficult to recycle even though they contain organic carbon and nitrogen components. Gasification is an emerging technology to utilize such challenging waste streams and produce syngas that can be further processed into, e.g., Fischer-Tropsch fuels, methane, or methanol. Here, the objective is to investigate if nitrogen can be recovered from product gas cleaning in a dual fluidized bed (DFB) after gasification of softwood pellets to form yeast biomass. Yeast biomass is a protein-rich product, which can be used for food and feed applications. An aqueous solution containing ammonium at a concentration of 66 mM was obtained and by adding other nutrients it enables the growth of the methylotrophic yeast Komagataella phaffii to form 6.2 g.L-1 dry yeast biomass in 3 days. To further integrate the process, it is discussed how methanol can be obtained from syngas by chemical catalysis, which is used as a carbon source for the yeast culture. Furthermore, different gas compositions derived from the gasification of biogenic feedstocks including sewage sludge, bark, and chicken manure are evaluated for their ability to yield methanol and yeast biomass. The different feedstocks are compared based on their potential to yield methanol and ammonia, which are required for the generation of yeast biomass. It was found that the gasification of bark and chicken manure yields a balanced carbon and nitrogen source for the formation of yeast biomass. Overall, a novel integrated process concept based on renewable, biogenic feedstocks is proposed connecting gasification with methanol synthesis to enable the formation of protein-rich yeast biomass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...