Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 247: 9-18, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229787

RESUMO

Oil spills are among the most significant threats to aquatic ecosystems. The present work describes the synthesis of different organic-inorganic hybrid matrices with magnetic properties, obtained in the forms of powders and membranes. The powders were synthesized using the following biomass wastes to form the organic phase: coconut mesocarp, sugarcane bagasse, sawdust, and water hyacinth. The resulting powders were denoted HMG-CO, HMG-CN, HMG-SE, and HMG-AP, respectively. Membranes (denoted MHMG-PES) were prepared using polyethersulfone polymer. In both cases, the inorganic phase was cobalt ferrite. The materials were evaluated in terms of their efficiencies in removing crude oil from water surfaces. The presence of organic matter, polyethersulfone, and cobalt ferrite in the structures of the materials was confirmed by XRD and FTIR analyses. The efficiencies of the materials were determined using the Standard Test Method for Sorbent Performance of Adsorbents (ASTM F726-99). Among the hybrids in powder form, the HMG-CN material presented the highest oil removal efficiency (85%, adsorptive capacity of 17 g g-1), which could be attributed to the fibrous nature of the sugarcane bagasse. The MHMG-PES membrane was able to remove 35 times its own mass of oil (adsorptive capacity of 35 g g-1). In addition to this high removal efficiency, an important advantage of MHMG-PES, compared to the HMG-CN hybrid powder, was that the oil could be mechanically removed from the membrane surface, eliminating the need for subsequent time-consuming extraction steps requiring large volumes of organic solvents and additional energy expenditure. When the two materials were used simultaneously, it was possible to remove 45 times their own mass of oil (adsorptive capacity of 45 g g-1), with the adsorptive capacity of HMG-CN increasing by 23%. This high adsorptive capacity was due to the retaining barrier formed by the HMG-CN hybrid powder, which prevented the oil patch from spreading and enabled its homogeneous removal, which was not possible using MHMG-PES alone. It could be concluded that use of the magnetic hybrids synthesized using biomass wastes, together with the hybrid magnetic membrane, provided an effective and inexpensive technological alternative for the removal of oil from water surfaces.


Assuntos
Petróleo , Poluentes Químicos da Água , Ecossistema , Pós , Água
2.
J Environ Manage ; 213: 236-246, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29500996

RESUMO

The use of industrial waste to synthesize materials of technological interest is a rational way to minimize or solve environmental pollution problems. This work investigates the adsorption of cadmium and lead ions by magnetic hybrid adsorbents synthesized using the in natura biomasses coconut mesocarp (CCFe), sawdust (SAFe), and termite nest (TEFe) for the organic phases and magnetic cobalt ferrite as the inorganic phase. The formation of a cobalt ferrite phase was confirmed by XRD. The use of XRD and FTIR analyses revealed the presence of organic matter in the structure of the material. Removal assays performed at different pH values (2.0-8.0) showed the effectiveness of the adsorbent for the removal of Pb2+ at pH 3.0 and Cd2+ at pH 4.0. The adsorption processes showed fast kinetics, with removal of 79-86% of Pb2+ and 49% of Cd2+ within only 5 min, and removal of 92-96% of the metal species at equilibrium. In the case of cadmium, the hybrid sorbents (CCFe, SAFe, and TEFe) showed high removal capacity after three reuse cycles, while the removal of lead decreased from 99% to 40%. The adsorbent matrices saturated with the recovered cadmium and lead ions showed excellent catalytic performance in the reduction of 4-nitrophenol, with 99.9% conversion within 43-56 s. The materials showed high capacities for reuse in three successive reduction cycles. The findings highlight the effectiveness of an industrial symbiosis approach to the development of new technologically important materials.


Assuntos
Cádmio/isolamento & purificação , Chumbo/isolamento & purificação , Nitrofenóis , Poluentes Químicos da Água , Adsorção , Biomassa , Cádmio/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Chumbo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...