Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10922, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740789

RESUMO

Melatonin receptors MT1 and MT2 are G protein-coupled receptors that mediate the effects of melatonin, a hormone involved in circadian rhythms and other physiological functions. Understanding the molecular interactions between these receptors and their ligands is crucial for developing novel therapeutic agents. In this study, we used molecular docking, molecular dynamics simulations, and quantum mechanics calculation to investigate the binding modes and affinities of three ligands: melatonin (MLT), ramelteon (RMT), and 2-phenylmelatonin (2-PMT) with both receptors. Based on the results, we identified key amino acids that contributed to the receptor-ligand interactions, such as Gln181/194, Phe179/192, and Asn162/175, which are conserved in both receptors. Additionally, we described new meaningful interactions with Gly108/Gly121, Val111/Val124, and Val191/Val204. Our results provide insights into receptor-ligand recognition's structural and energetic determinants and suggest potential strategies for designing more optimized molecules. This study enhances our understanding of receptor-ligand interactions and offers implications for future drug development.


Assuntos
Melatonina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Receptor MT1 de Melatonina , Receptor MT2 de Melatonina , Melatonina/metabolismo , Melatonina/química , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Receptor MT1 de Melatonina/química , Humanos , Ligantes , Teoria Quântica , Sítios de Ligação , Indenos/química , Indenos/metabolismo
2.
J Biomol Struct Dyn ; 41(7): 2981-2991, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35188085

RESUMO

Diseases caused by viruses of the genus Flavivirus are among the main diseases that affect the world and they are a serious public health problem. Three of them stand out: Dengue, Yellow fever and Zika viruses. The non-structural protein 1 (NS1), encoded by this viral genus, in its dimeric form, plays important roles in the pathogenesis and RNA replication of these viruses. Therefore, the identification of chemicals with the potential to inhibit the formation of the NS1 protein dimer of DENV, YFV and ZIKV would enable them to act as a multi-target drug. For this, we selected conformations of the NS1 protein monomer with similar ß-roll domain structure among the three virus species from conformations obtained from molecular dynamics simulations performed in GROMACS in 5 replicates of 150 ns for each species. After selecting the protein structures, a virtual screening of compounds from the natural products catalog of the ZINC database was performed using AutoDock Vina. The 100 best compounds were classified according efficiency criteria. Two compounds were observed in common to the species, with energy scores ranging from -9.2 kcal/mol to -10.1 kcal/mol. The results obtained here demonstrate the high similarity of NS1 proteins in the Flavivirus genus and high affinity for the same compounds; thus justifying the potential of these small molecules act in multitarget therapy.Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus da Dengue , Infecção por Zika virus , Zika virus , Humanos , Proteínas não Estruturais Virais/química
3.
Viruses ; 13(11)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835099

RESUMO

Rocio virus (ROCV) is a mosquito-borne flavivirus and human pathogen. The virus is indigenous to Brazil and was first detected in 1975 in the Sao Paulo State, and over a period of two years was responsible for several epidemics of meningoencephalitis in coastal communities leading to over 100 deaths. The vast majority of ROCV infections are believed to be subclinical and clinical manifestations can range from uncomplicated fever to fatal meningoencephalitis. Birds are the natural reservoir and amplification hosts and ROCV is maintained in nature in a mosquito-bird-mosquito transmission cycle, primarily involving Psorophora ferox mosquitoes. While ROCV has remained mostly undetected since 1976, in 2011 it re-emerged in Goiás State causing a limited outbreak. Control of ROCV outbreaks depends on sustainable vector control measures and public education. To date there is no specific treatment or licensed vaccine available. Here we provide an overview of the ecology, transmission cycles, epidemiology, pathogenesis, and treatment options, aiming to improve our ability to understand, predict, and ideally avert further ROCV emergence.


Assuntos
Surtos de Doenças , Infecções por Flavivirus/virologia , Flavivirus/genética , Animais , Brasil/epidemiologia , Flavivirus/classificação , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/transmissão , Humanos , Mosquitos Vetores/virologia , Proteínas Virais/genética
4.
J Fungi (Basel) ; 6(4)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238437

RESUMO

BACKGROUND: Systemic mycosis is a cause of death of immunocompromised subjects. The treatment directed to evade fungal pathogens shows severe limitations, such as time of drug exposure and side effects. The paracoccidioidomycosis (PCM) treatment depends on the severity of the infection and may last from months to years. METHODS: To analyze the main interactions of Paracoccidioides lutzii isocitrate lyase (ICL) regarding the energetic metabolism through affinity chromatography, we performed blue native PAGE and co-immunoprecipitation to identify ICL interactions. We also performed in silico analysis by homology, docking, hot-spot prediction and contact preference analysis to identify the conformation of ICL complexes. RESULTS: ICL interacted with 18 proteins in mycelium, 19 in mycelium-to-yeast transition, and 70 in yeast cells. Thirty complexes were predicted through docking and contact preference analysis. ICL has seven main regions of interaction with protein partners. CONCLUSIONS: ICL seems to interfere with energetic metabolism of P. lutzii, regulating aerobic and anaerobic metabolism as it interacts with proteins from glycolysis, gluconeogenesis, TCA and methylcitrate cycles, mainly through seven hot-spot residues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...