Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0298363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578775

RESUMO

Smart cities provide ease in lifestyle to their community members with the help of Information and Communication Technology (ICT). It provides better water, waste and energy management, enhances the security and safety of its citizens and offers better health facilities. Most of these applications are based on IoT-based sensor networks, that are deployed in different areas of applications according to their demand. Due to limited processing capabilities, sensor nodes cannot process multiple tasks simultaneously and need to offload some of their tasks to remotely placed cloud servers, which may cause delays. To reduce the delay, computing nodes are placed in different vicinitys acting as fog-computing nodes are used, to execute the offloaded tasks. It has been observed that the offloaded tasks are not uniformly received by fog computing nodes and some fog nodes may receive more tasks as some may receive less number of tasks. This may cause an increase in overall task execution time. Furthermore, these tasks comprise different priority levels and must be executed before their deadline. In this work, an Efficient Offloaded Task Execution for Fog enabled Smart cities (EOTE - FSC) is proposed. EOTE - FSC proposes a load balancing mechanism by modifying the greedy algorithm to efficiently distribute the offloaded tasks to its attached fog nodes to reduce the overall task execution time. This results in the successful execution of most of the tasks within their deadline. In addition, EOTE - FSC modifies the task sequencing with a deadline algorithm for the fog node to optimally execute the offloaded tasks in such a way that most of the high-priority tasks are entertained. The load balancing results of EOTE - FSC are compared with state-of-the-art well-known Round Robin, Greedy, Round Robin with longest job first, and Round Robin with shortest job first algorithms. However, fog computing results of EOTE - FSC are compared with the First Come First Serve algorithm. The results show that the EOTE - FSC effectively offloaded the tasks on fog nodes and the maximum load on the fog computing nodes is reduced up to 29%, 27.3%, 23%, and 24.4% as compared to Round Robin, Greedy, Round Robin with LJF and Round Robin with SJF algorithms respectively. However, task execution in the proposed EOTE - FSC executes a maximum number of offloaded high-priority tasks as compared to the FCFS algorithm within the same computing capacity of fog nodes.


Assuntos
Algoritmos , Comunicação , Cidades , Instalações de Saúde , Ciência da Informação
2.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38610310

RESUMO

Smart cities are powered by several new technologies to enhance connectivity between devices and develop a network of connected objects which can lead to many smart industrial applications. This network known as the Industrial Internet of Things (IIoT) consists of sensor nodes that have limited computing capacity and are sometimes not able to execute intricate industrial tasks within their stipulated time frame. For faster execution, these tasks are offloaded to nearby fog nodes. Internet access and the diverse nature of network types make IIoT nodes vulnerable and are under serious malicious attacks. Malicious attacks can cause anomalies in the IIoT network by overloading complex tasks, which can compromise the fog processing capabilities. This results in an increased delay of task computation for trustworthy nodes. To improve the task execution capability of the fog computing node, it is important to avoid complex offloaded tasks due to malicious attacks. However, even after avoiding the malicious tasks, if the offloaded tasks are too complex for the fog node to execute, then the fog nodes may struggle to process all legitimate tasks within their stipulated time frame. To address these challenges, the Trust-based Efficient Execution of Offloaded IIoT Trusted tasks (EEOIT) is proposed for fog nodes. EEOIT proposes a mechanism to detect malicious nodes as well as manage the allocation of computing resources so that IIoT tasks can be completed in the specified time frame. Simulation results demonstrate that EEOIT outperforms other techniques in the literature in an IIoT setting with different task densities. Another significant feature of the proposed EEOIT technique is that it enhances the computation of trustable tasks in the network. The results show that EEOIT entertains more legitimate nodes in executing their offloaded tasks with more executed data, with reduced time and with increased mean trust values as compared to other schemes.

3.
Sensors (Basel) ; 20(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244668

RESUMO

Internet of Things (IoT) is a promising technology that uses wireless sensor networks to enable data collection, monitoring, and transmission from the physical devices to the Internet. Due to its potential large scale usage, efficient routing and Medium Access Control (MAC) techniques are vital to meet various application requirements. Most of the IoT applications need low data rate and low powered wireless transmissions and IEEE 802.15.4 standard is mostly used in this regard which offers superframe structure at the MAC layer. However, for IoT applications where nodes have adaptive data traffic, the standard has some limitations such as bandwidth wastage and latency. In this paper, a new superframe structure is proposed that is backward compatible with the existing parameters of the standard. The proposed superframe overcomes limitations of the standard by fine-tuning its superframe structure and squeezing the size of its contention-free slots. Thus, the proposed superframe adjusts its duty cycle according to the traffic requirements and accommodates more nodes in a superframe structure. The analytical results show that our proposed superframe structure has almost 50% less delay, accommodate more nodes and has better link utilization in a superframe as compared to the IEEE 802.15.4 standard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...