Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(27): 9290-9299, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366321

RESUMO

We analyze modularity for a B-M-E triblock protein designed to self-assemble into antifouling coatings. Previously, we have shown that the design performs well on silica surfaces when B is taken to be a silica-binding peptide, M is a thermostable trimer domain, and E is the uncharged elastin-like polypeptide (ELP), E = (GSGVP)40. Here, we demonstrate that we can modulate the nature of the substrate on which the coatings form by choosing different solid-binding peptides as binding domain B and that we can modulate antifouling properties by choosing a different hydrophilic block E. Specifically, to arrive at antifouling coatings for gold surfaces, as binding block B we use the gold-binding peptide GBP1 (with the sequence MHGKTQATSGTIQS), while we replace the antifouling blocks E by zwitterionic ELPs of different lengths, EZn = (GDGVP-GKGVP)n/2, with n = 20, 40, or 80. We find that even the B-M-E proteins with the shortest E blocks make coatings on gold surfaces with excellent antifouling against 1% human serum (HS) and reasonable antifouling against 10% HS. This suggests that the B-M-E triblock protein can be easily adapted to form antifouling coatings on any substrate for which solid-binding peptide sequences are available.


Assuntos
Incrustação Biológica , Humanos , Incrustação Biológica/prevenção & controle , Peptídeos/química , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício
2.
Mater Today Bio ; 19: 100580, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36846310

RESUMO

Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.

3.
Biomacromolecules ; 23(9): 3507-3516, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35952369

RESUMO

We propose to exploit multivalent binding of solid-binding peptides (SBPs) for the physical attachment of antifouling polypeptide brushes on solid surfaces. Using a silica-binding peptide as a model SBP, we find that both tandem-repeated SBPs and SBPs repeated in branched architectures implemented via a multimerization domain work very well to improve the binding strength of polypeptide brushes, as compared to earlier designs with a single SBP. At the same time, for many of the designed sequences, either the solubility or the yield of recombinant production is low. For a single design, with the domain structure B-M-E, both solubility and yield of recombinant production were high. In this design, B is a silica-binding peptide, M is a highly thermostable, de novo-designed trimerization domain, and E is a hydrophilic elastin-like polypeptide. We show that the B-M-E triblock polypeptide rapidly assembles into highly stable polypeptide brushes on silica surfaces, with excellent antifouling properties against high concentrations of serum albumin. Given that SBPs attaching to a wide range of materials have been identified, the B-M-E triblock design provides a template for the development of polypeptides for coating many other materials such as metals or plastics.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Dióxido de Silício
4.
Front Plant Sci ; 12: 638454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815445

RESUMO

Secretions of parasitic worms (helminths) contain a wide collection of immunomodulatory glycoproteins with the potential to treat inflammatory disorders, like autoimmune diseases. Yet, the identification of single molecules that can be developed into novel biopharmaceuticals is hampered by the limited availability of native parasite-derived proteins. Recently, pioneering work has shown that helminth glycoproteins can be produced transiently in Nicotiana benthamiana plants while simultaneously mimicking their native helminth N-glycan composition by co-expression of desired glycosyltransferases. However, efficient "helminthization" of N-glycans in plants by glyco-engineering seems to be hampered by the undesired truncation of complex N-glycans by ß-N-acetyl-hexosaminidases, in particular when aiming for the synthesis of N-glycans with antennary GalNAcß1-4GlcNAc (LacdiNAc or LDN). In this study, we cloned novel ß-hexosaminidase open reading frames from N. benthamiana and characterized the biochemical activity of these enzymes. We identified HEXO2 and HEXO3 as enzymes responsible for the cleavage of antennary GalNAc residues of N-glycans on the model helminth glycoprotein kappa-5. Furthermore, we reveal that each member of the HEXO family has a distinct specificity for N-glycan substrates, where HEXO2 has strict ß-galactosaminidase activity, whereas HEXO3 cleaves both GlcNAc and GalNAc. The identification of HEXO2 and HEXO3 as major targets for LDN cleavage will enable a targeted genome editing approach to reduce undesired processing of these N-glycans. Effective knockout of these enzymes could allow the production of therapeutically relevant glycoproteins with tailor-made helminth N-glycans in plants.

5.
Biomacromolecules ; 22(5): 1966-1979, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33871996

RESUMO

Control over the placement and activity of biomolecules on solid surfaces is a key challenge in bionanotechnology. While covalent approaches excel in performance, physical attachment approaches excel in ease of processing, which is equally important in many applications. We show how the precision of recombinant protein engineering can be harnessed to design and produce protein-based diblock polymers with a silica-binding and highly hydrophilic elastin-like domain that self-assembles on silica surfaces and nanoparticles to form stable polypeptide brushes that can be used as a scaffold for later biofunctionalization. From atomic force microscopy-based single-molecule force spectroscopy, we find that individual silica-binding peptides have high unbinding rates. Nevertheless, from quartz crystal microbalance measurements, we find that the self-assembled polypeptide brushes cannot easily be rinsed off. From atomic force microscopy imaging and bulk dynamic light scattering, we find that the binding to silica induces fibrillar self-assembly of the peptides. Hence, we conclude that the unexpected stability of these self-assembled polypeptide brushes is at least in part due to peptide-peptide interactions of the silica-binding blocks at the silica surface.


Assuntos
Elastina , Nanopartículas , Elastina/genética , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Peptídeos , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...