Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2633, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788266

RESUMO

Cryoconite holes, ponds full of melting water with sediment on the bottom, are hotspots of biodiversity on glacier surfaces and host dynamic micro-ecosystems. They have been extensively investigated in different areas of the world (e.g., the Arctic, Antarctic, Alps, and Himalaya), but so far no study has described the bacterial communities of the glaciers in the Andes, the world's longest mountain range. In this study, we describe the bacterial communities of three small (< 2 km2) high-elevation (< 4200 m a.s.l.) glaciers of the Central Andes (Iver, East Iver and Morado glaciers) and two large (> 85 km2) glaciers of the Patagonian Andes (Exploradores and Perito Moreno glaciers) whose ablation tongues reach low altitude (< 300 m a.s.l.). Results show that the bacterial communities were generally similar to those observed in the cryoconite holes of other continents, but with few cyanobacteria (0.5% of sequences). The most abundant orders were Betaproteobacteriales, Cytophagales, Chitinophagales, Acetobacterales, Frankiales, Armatimonadales, Sphingobacteriales, Rhizobiales, Bacteroidales, Sphingomonadales, and Micrococcales. The bacterial communities differed between glaciers and both water pH and O2 concentration appeared to influence the bacterial community composition. This work thus provides the first description of the bacterial communities in cryoconite holes of South American glaciers.


Assuntos
Alphaproteobacteria , Cianobactérias , Ecossistema , Biodiversidade , Bacteroidetes , Camada de Gelo/microbiologia , Água
2.
Mar Biotechnol (NY) ; 24(3): 431-447, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35486299

RESUMO

Most members of the Pseudoalteromonas genus have been isolated from living surfaces as members of epiphytic and epizooic microbiomes on marine macroorganisms. Commonly Pseudoalteromonas isolates are reported as a source of bioactive exoproducts, i.e., secondary metabolites, such as exopolymeric substances and extracellular enzymes. The experimental conditions for the production of these agents are commonly associated with sessile metabolic states such as biofilms or liquid cultures in the stationary growth phase. Despite this, the molecular mechanisms that connect biofilm formation and the biosynthesis of exoproducts in Pseudoalteromonas isolates have rarely been mentioned in the literature. This review compiles empirical evidence about exoproduct biosynthesis conditions and molecular mechanisms that regulate sessile metabolic states in Pseudoalteromonas species, to provide a comprehensive perspective on the regulatory convergences that generate the recurrent coexistence of both phenomena in this bacterial genus. This synthesis aims to provide perspectives on the extent of this phenomenon for the optimization of bioprospection studies and biotechnology processes based on these bacteria.


Assuntos
Pseudoalteromonas , Biofilmes , Pseudoalteromonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...