Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 40(2): 198-208, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34580478

RESUMO

Optoelectronic systems can exert precise control over targeted neurons and pathways throughout the brain in untethered animals, but similar technologies for the spinal cord are not well established. In the present study, we describe a system for ultrafast, wireless, closed-loop manipulation of targeted neurons and pathways across the entire dorsoventral spinal cord in untethered mice. We developed a soft stretchable carrier, integrating microscale light-emitting diodes (micro-LEDs), that conforms to the dura mater of the spinal cord. A coating of silicone-phosphor matrix over the micro-LEDs provides mechanical protection and light conversion for compatibility with a large library of opsins. A lightweight, head-mounted, wireless platform powers the micro-LEDs and performs low-latency, on-chip processing of sensed physiological signals to control photostimulation in a closed loop. We use the device to reveal the role of various neuronal subtypes, sensory pathways and supraspinal projections in the control of locomotion in healthy and spinal-cord injured mice.


Assuntos
Optogenética , Tecnologia sem Fio , Animais , Encéfalo/fisiologia , Camundongos , Neurônios/fisiologia , Medula Espinal/fisiologia
2.
J Tissue Eng Regen Med ; 12(2): e918-e936, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28101909

RESUMO

Skeletal muscle holds significant regenerative potential but is incapable of restoring tissue loss caused by severe injury, congenital defects or tumour ablation. Consequently, skeletal muscle models are being developed to study human pathophysiology and regeneration. Their physiological accuracy, however, is hampered by the lack of an easily accessible human cell source that is readily expandable and capable of efficient differentiation. MYOD1, a master gene regulator, induces transdifferentiation of a variety of cell types into skeletal muscle, although inefficiently in human cells. Here we used MYOD1 to establish its capacity to induce skeletal muscle transdifferentiation of human dermal fibroblasts under baseline conditions. We found significant transdifferentiation improvement via transforming growth factor-ß/activin signalling inhibition, canonical WNT signalling activation, receptor tyrosine kinase binding and collagen type I utilization. Mechanistically, manipulation of individual signalling pathways modulated the transdifferentiation process via myoblast proliferation, lowering the transdifferentiation threshold and inducing cell fusion. Overall, we used transdifferentiation to achieve the robust derivation of human skeletal myotubes and have described the signalling pathways and mechanisms regulating this process. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Transdiferenciação Celular , Derme/citologia , Fibroblastos/citologia , Músculo Esquelético/citologia , Proteína MyoD/metabolismo , Animais , Cálcio/metabolismo , Fusão Celular , Linhagem Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Camundongos , Imagem Óptica , Fenótipo , Transdução de Sinais
3.
Cell ; 171(2): 440-455.e14, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28942925

RESUMO

Corticospinal neurons (CSNs) represent the direct cortical outputs to the spinal cord and play important roles in motor control across different species. However, their organizational principle remains unclear. By using a retrograde labeling system, we defined the requirement of CSNs in the execution of a skilled forelimb food-pellet retrieval task in mice. In vivo imaging of CSN activity during performance revealed the sequential activation of topographically ordered functional ensembles with moderate local mixing. Region-specific manipulations indicate that CSNs from caudal or rostral forelimb area control reaching or grasping, respectively, and both are required in the transitional pronation step. These region-specific CSNs terminate in different spinal levels and locations, therefore preferentially connecting with the premotor neurons of muscles engaged in different steps of the task. Together, our findings suggest that spatially defined groups of CSNs encode different movement modules, providing a logic for parallel-ordered corticospinal circuits to orchestrate multistep motor skills.


Assuntos
Medula Cervical/fisiologia , Destreza Motora , Vias Neurais , Animais , Cálcio/análise , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Medula Cervical/citologia , Membro Anterior/fisiologia , Articulações/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
4.
Cytoskeleton (Hoboken) ; 73(5): 221-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27015595

RESUMO

The significant gap between quantitative and qualitative understanding of cytoskeletal function is a pressing problem; microscopy and labeling techniques have improved qualitative investigations of localized cytoskeleton behavior, whereas quantitative analyses of whole cell cytoskeleton networks remain challenging. Here we present a method that accurately quantifies cytoskeleton dynamics. Our approach digitally subdivides cytoskeleton images using interrogation windows, within which box-counting is used to infer a fractal dimension (Df ) to characterize spatial arrangement, and gray value intensity (GVI) to determine actin density. A partitioning algorithm further obtains cytoskeleton characteristics from the perinuclear, cytosolic, and periphery cellular regions. We validated our measurement approach on Cytochalasin-treated cells using transgenically modified dermal fibroblast cells expressing fluorescent actin cytoskeletons. This method differentiates between normal and chemically disrupted actin networks, and quantifies rates of cytoskeletal degradation. Furthermore, GVI distributions were found to be inversely proportional to Df , having several biophysical implications for cytoskeleton formation/degradation. We additionally demonstrated detection sensitivity of differences in Df and GVI for cells seeded on substrates with varying degrees of stiffness, and coated with different attachment proteins. This general approach can be further implemented to gain insights on dynamic growth, disruption, and structure of the cytoskeleton (and other complex biological morphology) due to biological, chemical, or physical stimuli. © 2016 Wiley Periodicals, Inc.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Derme/metabolismo , Fibroblastos/metabolismo , Actinas/genética , Citoesqueleto/genética , Derme/citologia , Fibroblastos/citologia , Humanos , Microscopia de Fluorescência
5.
Int J Pharm ; 454(1): 388-93, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23876501

RESUMO

Reactive oxygen species (ROS) play an important role in the pathogenesis of rheumatoid arthritis (RA). ROS such as hydrogen peroxide and superoxide are overproduced by activated macrophages in RA. As scavengers of ROS, enzymatic proteins such as catalase and superoxide dismutase (SOD) have a great therapeutic potential; however, in vivo application is limited especially when they are orally administered. Although, the oral route is the most convenient for drug administration, therapeutic proteins are easily degraded in vivo by the harsh conditions of gastrointestinal (GI) tract. Here, we introduce a novel drug delivery system composed of zein, a plant storage protein derived from maize. We demonstrate that zein nanoparticles can protect therapeutic proteins, catalase and SOD, from the harsh conditions of GI tract. Folate-conjugated catalase or SOD in zein nanoparticles can target the activated macrophages and scavenge the ROS generated by macrophages in vitro. This novel drug delivery system will be applicable to other orally administered treatments based on the protective property in the harsh conditions of GI tract.


Assuntos
Anti-Inflamatórios/administração & dosagem , Catalase/administração & dosagem , Portadores de Fármacos/química , Sequestradores de Radicais Livres/administração & dosagem , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Superóxido Dismutase/administração & dosagem , Zeína/química , Administração Oral , Animais , Anti-Inflamatórios/química , Catalase/química , Linhagem Celular Tumoral , Química Farmacêutica , Estabilidade de Medicamentos , Estabilidade Enzimática , Sequestradores de Radicais Livres/química , Macrófagos/metabolismo , Camundongos , Nanopartículas , Desnaturação Proteica , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/química , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...