Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(7): 18718-18730, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36219290

RESUMO

One of the most prevalent harmful heavy metals is lead (Pb). It is generally recognized to be harmful to the testicles. Asparagus officinalis has many saponins, flavonoids, and other phenolics with strong antioxidant and anti-inflammatory effects. The effects of A. officinalis (asparagus) aqueous extract (AOAE) on testicular damage caused by lead acetate (PbAc) were investigated in this study. In this way, 20 mg/kg PbAc was injected intraperitoneally 2 h after mice were administered 400 mg/kg AOAE orally for 14 days. In the biochemical analysis of testicular tissue, PbAc decreased enzymatic and nonenzymatic antioxidant molecules in testicular tissue, while increasing lipid peroxidation, nitric oxide, inflammatory markers [nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1 ß), IL-6, and inducible nitric oxide synthase (iNOS)], and apoptotic-related proteins. Additionally, PbAc was discovered to reduce sperm motility and increase the percentage of dead sperm. However, due to its antioxidant qualities, AOAE has been found to reduce oxidative stress, therefore protecting against inflammation and apoptosis. It also allowed the AOAE sperm parameters to restore to their previous values in the control group. According to the findings, AOAE could be a natural substance that could be used to treat Pb-induced testicular toxicity; this protection may be attributed to its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. However, this study warrants further works to explore in detail the underlying mechanisms of the alleviating effects of AOAE against Pb-induced toxicity and which of its active ingredients is responsible for this protection.


Assuntos
Asparagus , Intoxicação por Chumbo , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Chumbo/toxicidade , Asparagus/metabolismo , Motilidade dos Espermatozoides , Sementes , Estresse Oxidativo , Intoxicação por Chumbo/prevenção & controle , Anti-Inflamatórios/farmacologia , Apoptose
2.
Heliyon ; 8(12): e11917, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36506358

RESUMO

Progresses in the medicinal application of nanocompounds were accepted for the treatment of cancer. Nanoparticles-based therapy is of benefit for effective biodistribution and specific targeting. The current study investigated the anticancer effect of green synthesized platinum nanoparticles (PtNPs) against colon cancer cells (HCT-116). Flow cytometry and ELISA techniques were employed for detecting apoptotic and oxidative stress markers. Furthermore, PtNPs-lycopene (PtNPs-LP) on cell migration and invasion of HCT-116 cells was also examined. The PtNPs-LP was capable of diminishing cell proliferation and viability of HCT-116 cells in a dose-dependent mode. After treatment with PtNPs-LP, a significant increase in pro-apoptotic Bax and caspase-3 and a decrease in anti-apoptotic Bcl-2 was observed in treated cells that subsequently released cytochrome C into its cytoplasm, initiating cell death. Moreover, PtNPs-LP induced excessive generation of reactive oxygen species (ROS) and oxidative stress in cancer cells. In conclusion, PtNPs-LP exerts an antitumor effect against colon cancer cells via mediating important mechanisms such as cytotoxicity, apoptosis, and oxidative stress.

3.
Appl Biochem Biotechnol ; 194(12): 5945-5962, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35849254

RESUMO

Oral carcinoma is one of the most vicious forms of cancer with a very low survival rate, as its patients often respond poorly to conventional chemotherapy. Presently several researchers are attempting to pursue an alternative to this therapy using natural products. Considering the promising strategy and induction of apoptosis to target the cancer cells, we evaluated the influence of a seaweed Padina gymnospora (15 µg/ml and 20 µg/ml) in enhancing apoptosis of oral cancer cells (KB-CHR-8-5) after 24-h incubation. The morphological changes indicating apoptosis were primarily assessed using a light microscope after which the apoptosis was confirmed by performing AO/EB staining method. Subsequently, MMP and ROS levels in the cells were assessed using Rh 123 and DCFH-DA staining procedures, respectively. All the above tests confirmed the ability of P. gymnospora to accelerate apoptosis in the oral cancer cells. As a next step, wide proteome analysis was performed where the proteins from P. gymnospora-treated cells were separated using the 2D electrophoresis technique and compared with that of control cells to isolate the differentially expressed proteins. This procedure resulted in the isolation of 10 proteins which were identified using MALDI-TOF/TOF MS, which established that most of the isolated proteins were part of the apoptotic process of the cell. The proteins identified are part of huge and complex pathways where it gets linked with many more genes which are also associated with apoptosis. Bioinformatics of these identified proteins was analyzed using STRING and PANTHER databases. These proteins contribute to cell apoptosis by affecting various functions, biological processes, and the synthesis of cellular components. PANTHER also demonstrated that these proteins belong to the classes of proteins that take part in several vital pathways of the cell among which the apoptotic pathway is the predominant one.


Assuntos
Neoplasias Bucais , Phaeophyceae , Alga Marinha , Humanos , Proteoma , Neoplasias Bucais/tratamento farmacológico , Alga Marinha/metabolismo , Apoptose
4.
Neurochem Res ; 47(10): 3012-3023, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35838827

RESUMO

The role of oxidative stress in the initiation and progress of epilepsy is well established. Proanthocyanidins (PACs), a naturally occurring polyphenolic compound, have been reported to possess a broad spectrum of pharmacological and therapeutic properties against oxidative stress. However, the protective effects of proanthocyanidins against epilepsy have not been clarified. In the present study, we used the pentylenetetrazole (PTZ)-induced epilepsy mouse model to explore whether proanthocyanidins could help to reduce oxidative stress and protect against epilepsy. Mice were allocated into four groups (n = 14 per each group): control, PTZ (60 mg/kg, intraperitoneally), PACs + PTZ (200 mg/kg, p.o.) and sodium valproate (VPA) + PTZ (200 mg/kg, p.o.). PTZ injection caused oxidative stress in the hippocampal tissue as represented by the elevated lipid peroxidation and NO synthesis and increased expression of iNOS. Furthermore, depleted levels of anti-oxidants, GSH, GR, GPx, SOD, and CAT also indicate that oxidative stress was induced in mice exposed to PTZ. Additionally, a state of neuroinflammation was recorded following the developed seizures. Moreover, neuronal apoptosis was recorded following the development of epileptic convulsions as confirmed by the elevated Bax and caspase-3 and the decreased Bcl2 protein. Moreover, AChE activity, DA, NE, 5-HT, brain-derived neurotrophic factor levels, and gene expression of Nrf2 have decreased in the hippocampal tissue of PTZ exposed mice. However, pre-treatment of mice with PACs protected against the generation of oxidative stress, apoptosis, and neuroinflammation in the PTZ exposed mice brain as the biomarkers for all these conditions was bought to control levels. In addition, the gene expression of Nrf2 was significantly upregulated following PACs treatment. These results suggest that PACs can ameliorate oxidative stress, neuroinflammation, and neuronal apoptosis by activating the Nrf2 signaling pathway in PTZ induced seizures in mice.


Assuntos
Epilepsia , Proantocianidinas , Animais , Anticonvulsivantes/efeitos adversos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Pentilenotetrazol/toxicidade , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
5.
Microb Pathog ; 131: 53-64, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30940608

RESUMO

Polymorphonuclear neutrophils (PMNs) are indispensable in fighting infectious microbes by adopting various antimicrobial strategies including phagocytosis and neutrophil extracellular traps (NETs). Although the role and importance of PMNs in periodontal disease are well established, the specific molecular mechanisms involved in NET formation are yet to be characterized. In the present study, we sought to determine the role of periodontal pathogen on NET formation by utilizing Fusobacterium nucleatum. Our data demonstrates that F. nucleatum activates neutrophils and induces robust NETosis in a time-dependent manner via the upregulation of the Nucleotide oligomerization domain 1 (NOD1) and NOD2 receptors. Furthermore, CRISPR/Cas9 knockout of HL-60 cells and the use of ligands/inhibitors confirmed the involvement of NOD1 and NOD2 receptors in F. nucleatum-mediated NET formation. When treated with NOD1 and NOD2 inhibitors, we observed a significant downregulation of peptidylarginine deiminase 4 (PAD4) activity. In addition, neutrophils showed a significant increase and decrease of myeloperoxidase (MPO) and neutrophil elastase (NE) when treated with NOD1/NOD2 ligands and inhibitors, respectively. Taken together, CRISPR/Cas9 knockout of NOD1/NOD2 HL-60 cells and inhibitors of NOD signaling confirmed the role of NLRs in F. nucleatum-mediated NETosis. Our data demonstrates an important pathway linking NOD1 and NOD2 to NETosis by F. nucleatum, a prominent microbe in periodontal biofilms. This is the first study to elucidate the role of NOD-like receptors in NETosis and their downstream signaling network.


Assuntos
Fusobacterium nucleatum/patogenicidade , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Periodontite/metabolismo , Biofilmes , Sistemas CRISPR-Cas/genética , Regulação para Baixo , Células HL-60 , Histonas/metabolismo , Humanos , Elastase de Leucócito/metabolismo , Periodontite/microbiologia , Peroxidase/metabolismo , Fagocitose , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...