Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Future Med Chem ; 16(7): 647-663, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38385167

RESUMO

Aim: This study focuses on advancing green chemistry in anticancer drug discovery, particularly through the synthesis of azine derivatives with a naphthalene core using CS-SO3H as a catalyst. Methods: Novel benzaldazine and ketazine derivatives were synthesized using (E)-(naphthalen-1-ylmethylene)hydrazine and various carbonyl compounds. The methods employed included thermal and grinding techniques, utilizing CS-SO3H as an eco-friendly and cost-effective catalyst. Results: The approach resulted in high yields, short reaction times and demonstrated catalyst reusability. Cytotoxicity tests highlighted compounds 3b, 11 and 13 as potent against the HEPG2-1. Conclusion: This study successfully aligns with the objectives of eco-conscious drug development in organic chemistry. Molecular docking and in silico studies further indicate the potential of these ligands as antitumor medicines, with favorable oral bioavailability properties.


Assuntos
Antineoplásicos , Quitosana , Simulação de Acoplamento Molecular , Antineoplásicos/química , Naftalenos/farmacologia , Catálise
2.
Future Med Chem ; 16(5): 439-451, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38318668

RESUMO

Aim: Thiophene-based heterocycles were synthesized and evaluated for their antimicrobial activity against methicillin-resistant Staphylococcus aureus, Escherichia coli, Clostridium difficile and Candida albicans strains. Methods: Antimicrobial activity was determined using the broth microdilution method. Results: Spiro-indoline-oxadiazole 17 displayed the highest activity against C. difficile while having no effects against other bacterial strains. Compounds 8 and 16 displayed strong effects against TolC, an outer membrane protein, mutant E. coli. The results of computational chemical study and outcomes of experiments were in good agreement. A molecular docking study was conducted using a molecular operating environment to simulate the binding energies of the potent compounds with D-alanine ligase protein. Conclusion: This study suggests that spiro-indoline-oxadiazole 17 could be a good anticlostridial agent.


A series of thiophene-based heterocycles was synthesized and evaluated for their antimicrobial activity against methicillin-resistant Staphylococcus aureus, Escherichia coli, Clostridium difficile and Candida albicans strains. Notablly, a spiro­indoline­oxadiazole derivative displayed the highest activity against C. difficile with minimum inhibitory concentration values of 2 to 4 µg/ml. Interestingly, this compound exhibited no effects against other tested bacterial strains. For C. difficile, drugs that can inhibit it without affecting other Gram-positive or Gram-negative bacteria (not affecting the normal microbiota) are needed. This compound could be a good anticlostridial agent.


Assuntos
Clostridioides difficile , Hidrazinas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Escherichia coli , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Tiofenos/farmacologia , Oxidiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...