Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890963

RESUMO

This paper presents the development of a multilayer feed-forward neural network for the diagnosis of hypertension, based on a population-based study. For the development of this architecture, several physiological factors have been considered, which are vital to determining the risk of being hypertensive; a diagnostic system can offer a solution which is not easy to determine by conventional means. The results obtained demonstrate the sustainability of health conditions affecting humanity today as a consequence of the social environment in which we live, e.g., economics, stress, smoking, alcoholism, drug addiction, obesity, diabetes, physical inactivity, etc., which leads to hypertension. The results of the neural network-based diagnostic system show an effectiveness of 90%, thus generating a high expectation in diagnosing the risk of hypertension from the analyzed physiological data.


Assuntos
Hipertensão , Saúde Pública , Humanos , Hipertensão/diagnóstico , Redes Neurais de Computação , Comportamento Sedentário , Fumar
2.
Sensors (Basel) ; 21(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34770377

RESUMO

The design of neural network architectures is carried out using methods that optimize a particular objective function, in which a point that minimizes the function is sought. In reported works, they only focused on software simulations or commercial complementary metal-oxide-semiconductor (CMOS), neither of which guarantees the quality of the solution. In this work, we designed a hardware architecture using individual neurons as building blocks based on the optimization of n-dimensional objective functions, such as obtaining the bias and synaptic weight parameters of an artificial neural network (ANN) model using the gradient descent method. The ANN-based architecture has a 5-3-1 configuration and is implemented on a 1.2 µm technology integrated circuit, with a total power consumption of 46.08 mW, using nine neurons and 36 CMOS operational amplifiers (op-amps). We show the results obtained from the application of integrated circuits for ANNs simulated in PSpice applied to the classification of digital data, demonstrating that the optimization method successfully obtains the synaptic weights and bias values generated by the learning algorithm (Steepest-Descent), for the design of the neural architecture.


Assuntos
Redes Neurais de Computação , Semicondutores , Algoritmos , Neurônios , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...