Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 14(6): 555-560, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988474

RESUMO

Measurements of quantum systems inevitably involve disturbance in various forms. Within the limits imposed by quantum mechanics, there exists an ideal projective measurement that does not introduce a back action on the measured observable, known as a quantum non-demolition (QND) measurement1,2. Here we demonstrate an all-electrical QND measurement of a single electron spin in a gate-defined quantum dot. We entangle the single spin with a two-electron, singlet-triplet ancilla qubit via the exchange interaction3,4 and then read out the ancilla in a single shot. This procedure realizes a disturbance-free projective measurement of the single spin at a rate two orders of magnitude faster than its relaxation. The QND nature of the measurement protocol5,6 enables enhancement of the overall measurement fidelity by repeating the protocol. We demonstrate a monotonic increase of the fidelity over 100 repetitions against arbitrary input states. Our analysis based on statistical inference is tolerant to the presence of the relaxation and dephasing. We further exemplify the QND character of the measurement by observing spontaneous flips (quantum jumps)7 of a single electron spin. Combined with the high-fidelity control of spin qubits8-13, these results will allow for various measurement-based quantum state manipulations including quantum error correction protocols14.

2.
Nat Commun ; 9(1): 2133, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849025

RESUMO

Quantum coherence of superposed states, especially of entangled states, is indispensable for many quantum technologies. However, it is vulnerable to environmental noises, posing a fundamental challenge in solid-state systems including spin qubits. Here we show a scheme of entanglement engineering where pure dephasing assists the generation of quantum entanglement at distant sites in a chain of electron spins confined in semiconductor quantum dots. One party of an entangled spin pair, prepared at a single site, is transferred to the next site and then adiabatically swapped with a third spin using a transition across a multi-level avoided crossing. This process is accelerated by the noise-induced dephasing through a variant of the quantum Zeno effect, without sacrificing the coherence of the entangled state. Our finding brings insight into the spin dynamics in open quantum systems coupled to noisy environments, opening an avenue to quantum state manipulation utilizing decoherence effects.

3.
Sci Rep ; 7(1): 12201, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939803

RESUMO

Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

4.
Phys Rev Lett ; 119(1): 017701, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28731737

RESUMO

We demonstrate a new method for projective single-shot measurement of two electron spin states (singlet versus triplet) in an array of gate-defined lateral quantum dots in GaAs. The measurement has very high fidelity and is robust with respect to electric and magnetic fluctuations in the environment. It exploits a long-lived metastable charge state, which increases both the contrast and the duration of the charge signal distinguishing the two measurement outcomes. This method allows us to evaluate the charge measurement error and the spin-to-charge conversion error separately. We specify conditions under which this method can be used, and project its general applicability to scalable quantum dot arrays in GaAs or silicon.

5.
Sci Rep ; 6: 39113, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974792

RESUMO

A semiconductor quintuple quantum dot with two charge sensors and an additional contact to the center dot from an electron reservoir is fabricated to demonstrate the concept of scalable architecture. This design enables formation of the five dots as confirmed by measurements of the charge states of the three nearest dots to the respective charge sensor. The gate performance of the measured stability diagram is well reproduced by a capacitance model. These results provide an important step towards realizing controllable large scale multiple quantum dot systems.

6.
Sci Rep ; 6: 31820, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27550534

RESUMO

Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.

7.
Sci Adv ; 2(8): e1600694, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27536725

RESUMO

Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot-based qubits. This result can inspire contributions to quantum computing from industrial communities.


Assuntos
Pontos Quânticos/química , Silício/química , Modelos Teóricos , Nanotecnologia
8.
Sci Rep ; 5: 14616, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26416582

RESUMO

Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures.

9.
Nanotechnology ; 22(44): 445701, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21975543

RESUMO

One-dimensional superconducting transistors have been fabricated with individual InAs nanowires (NWs) using radio-frequency sputter cleaning followed by in situ metal deposition. Because of the highly transparent contacts formed in between the InAs NWs and the metals, supercurrent, multiple Andreev reflections and Shapiro steps under microwave radiation have been observed. Near pinch-off gate regions, Fabry-Perot interference and a normal conductance quantization with resonant features have been observed, which were found to be correlated with a supercurrent flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...